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Abstract

This paper develops a two-step semiparametric methodology for portfolio weight selection for characteristics-

based factor-tilt and factor-timing investment strategies. We build upon the expected utility maximization

framework of Brandt (1999) and Aït-sahalia and Brandt (2001). We assume that asset returns obey a characteristics-

based factor model with time-varying factor risk premia as in Li and Linton (2020). We prove under our return-

generating assumptions that in a market with a large number of assets, an approximately optimal portfolio can

be established using a two-step procedure. The first step finds optimal factor-mimicking sub-portfolios using

a quadratic objective function over linear combinations of characteristics-based factor loadings. The second

step dynamically combines these factor-mimicking sub-portfolios based on a time-varying signal, using the

investor’s expected utility as the objective function. We develop and implement a two-stage semiparametric

estimator. We apply it to CRSP (Center for Research in Security Prices) and FRED (Federal Reserve Economic

Data) data and find excellent in-sample and out-sample performance consistent with investors’ risk aversion

levels.

KEYWORDS: Portfolio management; Single index; GMM;

JEL CLASSIFICATION: C14; G11.

*Electronic address: gregory.connor@mu.ie
†Electronic address: sl736@cam.ac.uk
‡Electronic address: obl20@cam.ac.uk

1



1 INTRODUCTION 2

1 Introduction

The traditional portfolio choice model proceeds by estimating the parameters of an asset return distribution and

then finding the portfolio that maximizes expected payoffs for a given risk level, such as the optimal mean-

variance portfolio choice model proposed by Markowitz et al. (1952). This approach can produce biases in port-

folio weights since the portfolio selection process ignores the estimation error in the empirically-derived return

distribution parameters. Furthermore, as the number of assets increases, the estimation of the high-dimensional

covariance matrix becomes intractable. Some notable methods have been proposed to solve this issue, such as

linear (Ledoit and Wolf (2004)) and nonlinear shrinkage (Ledoit and Wolf (2017)) of the target covariance matrix

or selecting main elements by threshold (Fan et al. (2013)). However, these approaches may cause information

loss and lead to unsatisfactory results, as illustrate by Ao et al. (2019). At the same time, Ao et al. (2019) studied a

method called MAXSER, which is a sparse regression which sets the optimal sharpe ratio as the regressand. Their

method also requires a sparsity assumption and can be problematic when the number of assets n is large. Mean-

while, all aforementioned papers ignore the importance of predictive variables, which have been documented

by many researchers, such as Fama and French (1989), who analyzed the forecasting ability of dividend yield,

default spread and term spread on asset returns, as well as Keim and Stambaugh (1986), Campbell and Shiller

(1988), and Hodrick (1992) among others. The goal of this paper is to construct a two-step optimal portfolio that

takes advantage of both a large number of assets and dynamic predictors.

Brandt (1999) used nonparametric tools to directly estimate the portfolio weights that maximize expected utility

of the observed data, without first estimating the return distribution. He estimated the dynamic portfolio weights

of the assets in a two-asset model as a nonparametric function of the univariate time-series predictor of the future

excess returns of the risky assets. Aït-sahalia and Brandt (2001) replaced the univariate time series predictor with

an index-based set of predictors: the time-varying portfolio weights in a three-asset model were assumed to be a

nonlinear function of a linear fix combination of a vector of predictive variables. However, the number of assets

included in their portfolio was quite limited.

Brandt et al. (2009) developed a characteristic-based model for portfolio selection with a large cross-section

of assets. They assumed that optimal portfolio weights were linearly related to a small set of observable char-

acteristics, such as book-to-market ratio, momentum and market equity. They found the linear coefficients that

maximized expected utility under this assumption.

In this paper, we develop a new semiparametric model of portfolio selection, which combines the advantages

of a large cross-section of assets and dynamic predictive variables. This is achieved by a characteristics-based

asset pricing model. We generalize the methodologies in the above-mentioned papers since we do not impose the

assumption that optimal weights are linear in the characteristics. Furthermore, the firm-specific characteristics

included in our model can be significantly broadened. There are 33 characteristics in our empirical study, which

provides more potential abnormal return opportunities. Also, as in Aït-sahalia and Brandt (2001), we also allow
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information-based dynamically-varying portfolio allocation based on a single-index function of predictors. We

replace weighting across asset classes in Aït-sahalia and Brandt (2001) with weighting across our optimally-

constructed characteristics-based sub-portfolios.

We estimate the model using a new, two-stage semiparametric procedure. The first step involves the estimation

of the factor-mimicking sub-portfolios. This is a high-dimensional estimation problem since the number of assets

is diverging, but the objective function is quadratic, allowing us to solve it using semiparametric techniques.

That step compacts those assets into several sub-portfolios rather than discarding some of them, and also helps to

reduce the dimensionality, which simplifies the next step. The second step maximizes the dynamic expected utility

of a risk-free asset and those sub-portfolios conditional on a set of predictors, similar to Aït-sahalia and Brandt

(2001). Our two-step statistical methodology accounts fully for the estimation error in both semiparametric steps,

and we show that it approximates the intractable single-stage, asset-by-asset portfolio weight estimation problem

in a well-defined sense.

Our model is not entirely general: we do not allow individual asset selection in response to asset-specific val-

uation information. We essentially allow for factor-tilt strategies, which means weighting securities according

to their factor exposure in response to the associated factor risk premia, and factor timing, which means dynam-

ically varying factor-tilt strategies, accounting for predictability in factor risk premia, but not individual asset

selection. This method keeps most of the information contained in individual assets, while benefitting greatly

from dimensionality reduction.

We base our model on a dynamic, characteristics-based factor model of returns. This kind of model was first

studied by Connor and Linton (2007) and Connor et al. (2012), where they specified their model as:

yit = αi +

J
∑

j=1

gj(Xji)fjt + ǫit, (1)

where yit is the excess return on security i at time t; fjt is the jth risk factor’s return at time t; Xji is the

jth observable characteristic of firm i; αi represents the intercept (mispricing) part of ith asset return; and ǫit

are the mean zero idiosyncratic shocks. They restricted characteristic-based loading gj(·) to be a univariate

nonparametric function. To extend the dimension of the factor loading function gj(·), Kelly et al. (2019) and

Kim et al. (2019) specify both mispricing and factor loading parts as a parametric linear function of a large set of

firm-specific characteristics as:

yit = h(Xi) +
J
∑

j=1

gj(Xi)fjt + ǫit. (2)

They illustrated the validility of characteristics-based factor models and provided relevant empirical results. Li

and Linton (2020) generalized the parametric part of Equation 2 as semiparametric functions to be consistent with

earlier research. They also proposed power enhanced tests to verify their model, concluding that the semipara-

metric mispricing component h(Xi) was only significant during certain rolling windows.
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Section two describes the econometric framework for our model. We assume the returns are generated by the

asset pricing model in Li and Linton (2020) and that the factor risk premia are predictable based on a single-index

function involving a set of both stationary and nonstationary predictors.

Section three presents the general portfolio management problem and our restricted class of portfolio selection

rules in which the problem is divided into two steps. In the first step, the investors choose a set of characteristics-

based sub-portfolios that are well-diversified and mimic the returns of the underlying unobservable factors. In

the second step, the investors choose a dynamic combination of these sub-portfolios and a risk-free asset depen-

dent upon their time-varying information set and utility function. The information is specified as a single-index

function, which is well-approximated by orthogonal series, allowing both stationary and nonstationary covariates.

We show that under reasonable conditions on risk preference, the two-step selection rule has asymptotically zero

impact on an investor’s expected utility as the number of assets grows to infinity, relative to the unattainable true

optimal choice.

Section four derives estimators for both steps. In the factor-tilt step, the factor-mimicking portfolios are con-

structed by the linear combination of estimated characteristics-based factor loadings. To diversify the idiosyn-

cratic shocks further, the weight for each factor loading function is estimated through a constrained quadratic

objective function. In the second step, called factor timing, the optimization of the expected utility function is

solved by the methodology of the continuously-updating GMM, as in Hansen et al. (1996). The weights allocated

to the risk-free asset and sub-portfolios are determined by the single-index function approximated through Her-

mite polynomials, which allows for both stationary and nonstationary predictors, as in Dong et al. (2016b). The

coefficients of those orthogonal bases are estimated by solving the sample counterpart under the continuously-

updating GMM framework. Section five documents the hypothesis tests on the significance of these predictors

included in the single-index function.

Section six presents the empirical findings. We apply our approaches to monthly CRSP and FRED data and

reveal some popular predictive variables’ nonstationarity and significance. Furthermore, we find our portfolios

have different but outstanding performance under various levels of risk aversion. Finally, the results of the in-

sample and out-sample are similar and reflect the risk preference of the investor.

Section seven concludes and discusses the paper, while proofs of theorems and supplementary tables are ar-

ranged in the Appendix.

2 Econometric Framework

We assume there is a large panel of monthly stocks’ excess returns generated by the characteristics-based model:

yit =

J
∑

j=1

gj(Xi)(fjt + φjt) + ǫit, (3)
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where yit is ith stock’s excess return at time t while Xi is a large set of assets’ P-vector of characteristics, which

is regarded as time-invariant within a short time window; gj(Xi) is the jth characteristics-based factor loading,

which is specified as a multivariate additive semiparametric function. The factor returns Ft = (f1t, . . ., fJt)
⊺ are

the common sources of risk in asset returns at time t with associated means φt = {φ1t, . . . , φJt}. The asset-

specific return ǫit is conditional zero mean, i.e., E(ǫit|Xi,Ft) = 0.

This framework is an extension of Connor and Linton (2007) and Connor et al. (2012), who assumed the

factor beta function g(·) to be univariate. This model is a special case of Li and Linton (2020) by replacing the

mispricing component with the mean value φjt of the jth risk factor.

We allow for time variation in the characteristics of the assets across rolling windows. We treat the n × J

matrix of characteristics in the tth rolling window X = (X1, . . . ,Xn)
⊺, as a random draw from a multivariate

population distribution. Furthermore, the investor can observe X before rolling block t, and then choose his time

t portfolio.

We define the n × J matrix G(X) = (g1(X), . . . , gJ(X)) and gj(X) = (gj(X1), . . . , gj(Xn))
⊺ , and the

matrix form of the demeaned assets’ returns at time t is :

Yt = G(X)Ft + ǫt, t = 1, 2, . . . , T, (4)

where Yt is a n × 1 matrix of the demeaned assets’ excess returns at time t, G(X) = (g1(X), . . . , gJ(X)) is a

n× J factor loading matrix, and ǫt is a n× 1 vector of asset-specific returns.

Furthermore, we assume that there exists a nonsingular J × J matrix MG such that:

E(G(Xi)
⊺G(Xi)) = MG, (5)

where the expectation is over the multivariate probability density of characteristics and the off-diagonal elements

are all zeros. The Equation 5 simply imposes that for any large random population of the assets, the factor-loading

matrix is nonsingular with the probability of one.

For a finite value of n and realized characteristics matrix X , under weak assumption, the finite sample second

moment matrix approaches the population value as:

p lim
n→∞

1

n

n
∑

1=1

G(Xi)
⊺G(Xi) = MG, (6)

There is a scale indeterminacy in Equation 3 since one could multiply the function gj(Xi) by any non-zero

constant c and (fjt + φjt) by 1/c, and the model of returns would be identical. We resolve the this indeterminacy

by setting MG
jj = 1, where j = 1, . . . , J.

The estimation of Equation 5 under Equation 6 is discussed in Li and Linton (2020); it is achieved mainly

through "Projected Principal Component Analysis" (PPCA) by Fan et al. (2016). The idea is to project the n× T
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asset excess returns onto the B-spline space spanned by X , where X = (X1,X2, . . . ,Xn), and then, we collect

the projected returns Ŷ. Furthermore, we perform PCA on 1
T
ŶŶ⊺. Therefore, the Ĝ(X) is estimated as the

largest J eigenvectors of 1
T
ŶŶ⊺. Due to the property of the PCA, the assumption Equation 6 is satisfied.

Let Mf = E(FtF
⊺
t ) denote the nonsingular covariance matrix of the factors and M ǫ = E(ǫǫ⊺) denote the

covariance matrix of the idiosyncratic returns; note these two sources of returns are statistically independent. We

assume that the asset-specific risks are diversifiable, in particular:

λmax(M
ǫ) < cλ <∞,

where the λmax denotes the largest eigenvalue whereas cλ is a constant. This follows readily from standard

assumptions on weak correlations of the asset-specific risks.

We allow dynamic variation in the mean value of factor return premia. At the beginning of each period, a

K × 1 vector of random signal zt = (z1t, . . . , zKt)
⊺ is observed by the investor before he chooses his portfolio.

The expected return on the jth factor in Equation 3 is a nonlinear function of a fixed linear combination of these

dynamic signals by coefficients θ = (θ1, . . . , θK)
⊺ as:

φjt+1 = πj(θ
⊺zt). (7)

The three vectors Ft,zt and ǫt are assumed to be statistically independent. At each time t, the investor observes

the characteristics of those assets X , which is treated as time-invariant during this time block, and the dynamic

signal zt. Then, the investor chooses his time t portfolio based on this information. Finally, at the (t+1)th period,

his portfolio return depends upon the realized assets’ returns, which in turn depends on the realized factor returns

and asset-specific returns Ft+1 and ǫt+1 respectively, according to Equation 3.

3 A Two-Step Version of the Portfolio Choice Problem

This section first defines the utility function of a rational decision-maker and then describes how the optimal

portfolio weights are chosen through a two-step procedure. In step one, the investor chooses characteristics-based

factor-mimicking sub-portfolios based on a linear combination of the beta function
∑J

j=1 gj(X) in Equation 3.

Step two combines these sub-portfolios optimally using expected utility as the investor’s objective function, based

on a dynamic index.

3.1 Utility Function of the Investor

The investor in our model is myopic and he chooses his portfolio for time t to maximize one-period expected

utility of return. We assume his return at time t is Wt and his risk-averse von Neumann Morgenstern preference

is defined over Wt with a lower bound on the second derivative:

d

dW
u(W ) > 0,−c < d2

W 2
u(W ) < 0 (8)
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Additionally, we define the optimal portfolios weights n× 1 vector w∗ such that:

w∗ = argmax
w

E[u(rft +w∗⊺rt)|Xt, zt], (9)

where rft is the risk-free return at time t and rt is a n × 1 vector of stock returns at time t. In practice , the

optimal w∗ is hard to determine and unstable when n is large or the trading frequency is high, as discussed in the

Introduction. Therefore, we consider optimal portfolio choice under a restriction on portfolio weights. Rather than

choosing asset weights directly, the investor chooses a set of J characteristics-based portfolios to approximately

mimic the factors. Then, in the second step, the investor combines these factor-mimicking subportfolios optimally

using his expected utility function conditional on a group of predictors.

3.2 Step 1: Factor-mimicking Sub-portfolios

In this subsection, we propose a method to construct factor-mimicking sub-portfolios based on Equation 3 and

discuss the properties of these sub-portfolios.

We propose a semiparametric weighting function to mimic the risk factors Ft, which is in the form of a linear

combination of characteristics-based factor loadings as in Equation 3:

bj(Xi) = γj1g1(Xi) + · · ·+ γjJgJ(Xi), (10)

therefore, the portfolio weight of ith asset to construct the jth subportfolio is 1
n
bj(Xi).

The weighting matrix of assets to mimic all J factors is as follows:

B(Xi) =
1

n
ΓG(Xi)

⊺, (11)

where

B(Xi) =
1

n































b1(Xi)

b2(Xi)
...

bJ(Xi)































,

Γ =



























γ11 . . . γ1J

γ21 . . . γ2J

. . . . . . . . .

γJ1 . . . γJJ



























, G(Xi)
⊺ =































G1(Xi)

G2(Xi)
...

GJ(Xi)































.

Thus, the J × 1 factor-mimicking portfolio return vector at time t is calculated:

Qt(X) =































q1t(X)

q2t(X)
...

qJt(X)































=
n

∑

i=1

B(Xi)yit. (12)
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The factor-mimicking portfolio vector has at least two attractive properties, which are listed as theorems.

Theorem 1. Each subportfolio in the J×1 factor-mimicking vector defined by Equation 12 is a linear combination

of risk factors fjt directly.

Theorem1 implies that we can control the similarity between subportfolios and risk factors by adjusting coef-

ficients matrix Γ, which provides us with considerable flexibility.

Theorem 2. The returns of portfolio defined by Equation 12 have asymptotically zero idiosyncratic variance.

Theorem 2 illustrates that portfolio returns of factor-mimick sub-portfolios can diversify the asset-specific

returns completely as the number of assets goes to infinity.

An investor who uses a semiparametric characteristics-based weight function to choose sub-portfolios rather

than individual assets i sacrifices the flexibility to weight assets differently based on the properties of their asset-

specific returns ǫit, since the sub-portfolio weight function Equation 12 only differentiates assets by their char-

acteristic vectors. However, for both hedge fund managers and researchers, there are no satisfactory rules for

choosing thousands of assets robustly. Furthermore, some weighting strategies have to be rebalanced once per

trading day, and even more frequently for some strategies. This high-speed decision-making problem is intractable

without some simplifying applicable rules like Equation 12.

3.3 Step 2: Factor-timing Portfolio Based on Dynamic Signals

This subsection describes how to approximate the dynamic signal function πj(θ
⊺zt) in Equation 7, and how to use

this function as dynamic weights assigned to those factor-mimicking sub-portfolios in subsection 3.2, to reflect

information about their overperformance/underperformance on a risk-adjusted basis. This subsection captures the

particular "factor-timing" strategy used by the investor.

Here, we define the objective function as:

argmax
θ

E[u(αrft +Π(θ⊺zt)
⊺Qt+1(X))], (13)

subject to

‖θ‖2 = 1 and θ1 > 0

and

α+

J
∑

j=1

πj(θ
⊺zt) = 1

where rft is the risk-free return at time t and α is its portfolio weight, and

Π(θ⊺zt) = (π1(θ
⊺zt), . . . , πJ(θ

⊺zt))
⊺.
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The first restriction is for identification purposes while the second is for unit investment. We do not restrict short

selling and leverage. Equation 13 is a transformation of the objective function Equation 9. The n × 1 vector of

assets’ returns rt is replaced by the vector of sub-portfolios’ returns Qt+1 conditional on X , which compacts

the information of rt through observed characteristics X . Similarly, the dynamic weights of each asset w∗ is

substituted by the dynamic information function Π(θ⊺zt), which is the mean function for the risky factors φt

as in Equation 3. In other words, the objective function Equation 9 is a transformation of the utility function

Equation 13 by incorporating conditional variables zt,X .

Our purpose is to maximize the conditional expectation of the investor’s utility function. The investment

allocation to the jth factor-tilt sub-portfolios is determined by the jth information indicator πj(θ
⊺zt), which

is a single-index function, to avoid the problem of "curse of dimensionality" caused by fully nonparametric

methods. We specify fixed linear combinations as information input in an unknown function πj(·), as stated by

Aït-sahalia and Brandt (2001), for at least two reasons. Statistically, this can achieve a better convergence rate

for estimates, and economically, a univariate index value provides meaningful and convenient descriptions of

current investment opportunities. Meanwhile, these index functions’ effects on each sub-portfolio can be highly

nonlinear, as documented by Aït-sahalia and Brandt (2001). Therefore, we do not specify the functional form of

πj(·), allowing a parametric index function to influence each sub-portfolio’s weight nonparametrically.

To facilitate our estimation procedures, we approximate those unknown functions πj(·) by orthonormal bases

similar to Dong et al. (2016b). Their methods can allow the elements of information vector zt to be nonstationary.

As pointed by Gao et al. (2013) and Gao and Phillips (2013), conventional kernel estimation as in the Brandt

(1999) and Aït-sahalia and Brandt (2001) method may not be workable due to the breakdown of limit theory,

when zt is a multivariate I(1) process. In practice, some time series predictors are likely to be nonstationary, like

the unemployment rate, inflation and exchange rates, among other economic indicators. Therefore, we apply a

similar method as in the Dong et al. (2016b) to validate a more comprehensive application of our model.

Suppose all the link functions πj belong to L2(R) = {f(x) :
∫

f 2(x)dx <∞}. The Hermite function sequence

{Hi} is an orthonormal basis in L2(R):

Hi(x) = (
√
π2ii!)−1/2Hi(x) exp(−

x2

2
), i > 0, (14)

whereHi(x) are Hermite polynomials orthogonal with density exp(−x2). The orthogonality reads
∫

Hi(x)Hj(x)dx =

δij , the Kronecker delta.

Therefore, any countinuous function πj(·) ∈ L2(R) can be expanded into a linear combination of orthogonal

series:

πj(θ
⊺zt) =

∞
∑

l=0

βjlHl(θ
⊺zt). (15)
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We keep the first L− 1 terms and leave the rest as approximate residues:

πj(θ
⊺zt) =

L−1
∑

l=0

βjlHl(θ
⊺zt) + ψ(θ⊺zt), (16)

where ψ(θ⊺zt) is the approximation residues.

Furthermore, all J dynamic indicator functions can be approximated (we assume the same truncation parame-

ters for all functions for purposed of notation simplicity only):

Π(θ⊺zt) = BHL(θ
⊺zt)+Ψ(θ⊺zt), (17)

where

B =



















β10 . . . β1(L−1)

. . . . . . . . .

βJ0 . . . βJ(L−1)



















, HL(θ
⊺zt) =



















H0(θ
⊺zt)

. . .

HL−1(θ
⊺zt)



















,

and Ψ(θ⊺zt) is the approximation error.

Therefore, the objective function Equation 13 is transformed through replacing Π(θ⊺zt) by BHL(θ
⊺zt−1)

as:

arg max
α,B,Θ

E[u(αrft + (BHL(θ
⊺zt−1))

⊺Qt(X))], (18)

subject to

‖θ‖2 = 1 and θ1 > 0

α +
J
∑

j=1

β⊺

j HL(θ
⊺zt−1) = 1

Theorem 3. The restricted optimal portfolio weight function chosen by Equation 18 gives an approximately

optimal portfolio.

Theorem 3 demonstrates that, as the number of assets n → ∞, our two-step procedure is approximately

equivalent to Equation 9, which is the completely unrestricted asset-by-asset portfolio optimization because these

two methods give the same expected utility asymptotically.

4 Methodology

This section illustrates procedures for estimating Γ in Equation 11, and B,θ in Equation 18.

We assume that the investor chooses Γ based on the following objective:

Γ̂ = argmin
Γ

J
∑

j=1

E(bj(Xi)
2) (19)
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subject to

E[Qt(X)Qt(X)⊺] = IJ ,

where IJ is a J × J identity matrix.

In words, we choose the linear combination coefficients J × J matrix to maximize the spread of the portfolio

weights, specifically by minimizing the expected sum of squared portfolio weights, in the class of semiparametric

functions of the characteristics, subject to an orthogonality constraint on the vector of sub-portfolios’ returns.

These portfolios are an econometrically-derived variant of the widely popular Small-Minus-Big (SMB) and High-

minus-Low (HML) portfolios designed by Fama and French (1993) to capture the size-related and value-related

return factors. Fama and French (1993) did not minimize the sum of squared portfolio weights as was done in

Equation 19, but they instead set the portfolio weights using capitalization weight, which, in the highly diversified

US equity market, have a very low sum-of-squared relative to the number of assets. Fama and French (1993) did

not explicitly impose the orthogonality condition applied in Equation 19, but, as they noted, they chose their size

and value breakpoints so that the portfolio returns would have very low correlation. The reason that we set the

orthogonal constraint here is to diversify idiosyncratic risks further.

Next we show that Equation 19 can have a Langrangian solution. After expanding the constraint and under the

independence between Ft and ǫt, we have:

E[Qt(X)Qt(X)⊺] = E[( 1
n
ΓG(X)⊺G(X)Ft +

1
n
ΓG(X)⊺ǫt)(

1
n
F

⊺
t G(X)⊺G(X)Γ⊺ + 1

n
ǫ
⊺
tG(X)Γ⊺)]

= E(ΓG(X)⊺G(X)

n
FtF

⊺
t

G(X)⊺G(X)

n
Γ⊺) + 1

n2E(ΓG(X)⊺ǫtǫ
⊺
tG(X)Γ⊺)

→ ΓMGE(FtF
⊺
t )M

GΓ⊺ + 1
n2ΓG(X)⊺E(ǫtǫ

⊺
t)G(X)Γ⊺

,

which is a quadratic form in Γ.

As for the objective function, we have:

J
∑

j=1

E(bj(Xi)
2) =

J
∑

j=1

E(Γ2G(Xi)
2),

which is linear in Γ2.

Therefore, we write this constrained optimization problem of sample analogues in Lagrangian form:

L(Γ) =
1

n

J
∑

1

n
∑

i=1

ΓG(Xi)
⊺G(Xi)Γ

⊺ −Λ⊺vec((
1

T

T
∑

t=1

Qt(X)Qt(X)⊺)− IJ), (20)

where Λ is the 1
2
J(J + 1) vector of Lagrangian multipliers, and vec is the vecterization of a matrix.

The optimal Γ and associated Lagrangian multipliers will solve the first order conditions:

∂L

∂Γ
= 0J×J ,

∂L

∂Λ
= 0

1

2
J(J+1).
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Meanwhile, we collect the estimate Γ̂ to obtain the factor-mimicking sub-portfolios’ returns as:

Q̂t(X) =































q̂1t(X)

q̂2t(X)
...

q̂Jt(X)































=
n

∑

i=1

B̂(Xi)yit =
1

n

n
∑

i=1

Γ̂Ĝ(Xi)
⊺yit, (21)

where Ĝ(Xi) is the consistent estimate of Equation 3 as in Li and Linton (2020), where they specify G(Xi) as

an additive semiparametric function of asset-specified characteristics.

The next step derives an estimator for the dynamic portfolio allocation weighting functions Π(θ⊺zt−1). The

portfolio weight estimation problem is to find:

(α̂, B̂, θ̂) = arg max
α,B,θ

E[u(αrft + (BHL(θ
⊺zt−1))

⊺Q̂t(X))], (22)

subject to

‖θ‖2 = 1 and θ1 > 0

α +

J
∑

j=1

β⊺

j HL(θ
⊺zt−1) = 1

where Q̂t(X) is the estimate of sub-portfolios from Equation 21. This is essentially the same semiparametric

estimation problem analyzed by Aït-sahalia and Brandt (2001). The procedure relies on the profile estimation

of the single-index function. We iterate the first order condition to convergence after choosing initial values

arbitrarily.

With respect to identification issues, we need to solve another constrained optimization problem as:

arg max
α,B,θ

E[u(αrft + (BHL(θ
⊺zt−1))

⊺Q̂t(X))], (23)

subject to

‖θ‖2 = 1 and θ1 > 0

α +
J
∑

j=1

β⊺

j HL(θ
⊺zt−1) = 1

Therefore, the first order condition of the maximization with respect to B,θ is:

E[Mt] =



















u′(·)Q̂t(X)⊗HL(θ
⊺zt−1)] = 0JL×1

u′(·)Q̂t(X)IL×L(BH′
L(θ

⊺zt−1)⊗ zt−1)] = 0JL×1

u′(·)rft = 0



















,

where IL×L is a L× L identity matrix while H′
L and u′(·) are the first derivatives of the truncated orthonormal

series and the investor’s utility function respectively.
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As we can see, there are 2× JL+ 1 moment conditions to maximize the objective function.

These moment conditions can be used to construct standard GMM problem as was done in Hansen (1982):

(α, B̂, θ̂) = min
α,B,θ

E[Mt]
⊺SE[Mt]

subject to

‖θ‖2 = 1 and θ1 > 0

α +
J
∑

j=1

β⊺

j HL(θ
⊺zt−1) = 1

where S is the optimal weighting positive definite matrix as S = cov(Mt)
−1.

Then, we substitute these moment conditions E[Mt] with corresponding sample counterparts as:

mt =



















1
T

∑T
t=1 u

′(·)Q̂t(X)⊗HL−1(θ
⊺zt−1)] = 0JL×1

1
T

∑T
t=1 u

′(·)Q̂t(X)IL×L(BH′
L−1(θ

⊺zt−1)⊗ zt−1)] = 0JL×1

u′(·)rft = 0



















.

Similarly, we obtain the estimate of weighting as:

Ŝ =
1

T

T
∑

t=1















u′(·)Q̂t(X) ⊗HL−1(θ
⊺zt−1)] = 0JL×1

u′(·)Q̂t(X)IL×L(BH′
L−1(θ

⊺zt−1)⊗ zt−1)] = 0JL×1

u′(·)rft = 0





























u′(·)Q̂t(X) ⊗HL−1(θ
⊺zt−1)] = 0JL×1

u′(·)Q̂t(X)IL×L(BH′
L−1(θ

⊺zt−1)⊗ zt−1)] = 0JL×1

u′(·)rft = 0















⊺

.

Finally, we substitute the sample analogues and Ŝ into the objective function, and estimate B̂, θ̂:

(α̂, B̂, θ̂) = min
α,B,θ

m
⊺
t Ŝmt, (24)

subject to

‖θ‖2 = 1 and θ1 > 0

α +
J
∑

j=1

β⊺

j HL(θ
⊺zt−1) = 1

Furthermore, we substitute Equation 24 into the optimization iteration, which is called the continuously-

updating estimator; details can be found in Dong et al. (2018).

5 Hypothesis Tests

This section introduces the hypothesis tests that help us to understand which index variables are important to

guide the construction of factor-timing portfolios. We apply a Wald test to infer the significance of θj . We have

the null and alternative hypotheses as follows:
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H0 : Cθ = 0D×1, against H1 : Cθ 6= 0D×1,

where C is a D ×K fix matrix indicating the number of constraints D.

We denote the value of the objective function Equation 24 under B̂, θ̂ as V(B̂, θ̂) while under the null hy-

pothesis H0 as V(B̂, θ̂∗).

Therefore, if the null hypothesis is correct, we have:

T (V(B̂, θ̂∗)− V(B̂, θ̂)) ∼ χ2(D), (25)

where χ2(D) is the chi-square distribution with degree of freedom D. This method is a minimum-χ2 test,

the purpose of which is to check the minimized values of objective function Equation 24 after imposing some

restrictions.

We reject the null hypothesis if the test statistic exceeds the critical value.

6 Empirical Study

6.1 Data Description

6.1.1 Index Variables

We use the same index variable set as Aït-sahalia and Brandt (2001). These variables are all at a monthly fre-

quency:

• The Default Spread is the yield difference between Moody’s Baa and Aaa rated bonds, observed from

1967-07-01 to 2017-06-01 (600 months in total) denoted as DS.

• The Term Spread is the yield difference between 10 and 1 year government bonds, observed from 1967-

07-01 to 2017-06-01 (600 months in total) denoted as TS.

• The Trend is the difference between the log of the current S&P 500 index level and the log of the average

index level over the previous 12 months, observed from 1967-07-01 to 2017-06-01 (600 months in total).

• The Dividend Yield, also called Dividend-to-Price, is the sum of dividends paid on the S&P 500 index over

the past 12 months divided by the current level of the index observed from 1967-07-01 to 2017-06-01 (600

months in total). We use the percentage natural logarithm form of Dividend Yield, denoted as Ln(DY%).

• The Risk Free rate is obtained from the Fama-French factor model’s risk-free rate, observed from 1967-

07-01 to 2017-06-01, denoted in the percentage form as RF%.
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In Table 1, both "Trend" and "RF%" have small variation while "RF%" has some strong correlation with "TS"

and " Ln(DY%)". Apart from these, we also find that all of the index variables are not symmetrically distributed,

which is shown by the non-zero skewness. As for the kurtosis, the table indicates that outliers are quite common

among these variables.

In Table 2, we conclude the results of the unit root test and autocorrelation. After the Dickey-Fuller tests, we fail

to reject the null hypotheses that there are no unit roots among all index variables, especially for the " Ln(DY%)".

That can also be found from Figure 4. In terms of autocorrelation, almost all of the index series present persistent

autocorrelation even for lag nine, " Ln(DY%)" showing a strong signal of autocorrelation coefficient of 0.94, as

shown in Figure 4, Figure 5. However, "Trend" is an exception, where the autocorrelation decays to zero and is

negative after lag ten as shown in Figure 3. These test results verify the necessity of applying orthogonal series

to approximate the single index function with nonstationary covariates, as in subsection 3.3.

The data above was collected from the websites of FRED and Multpl.

6.2 Monthly Stock Data

We collected monthly stock returns from CRSP and firms’ characteristics from Compustat, from 1965 to 2017. We

constructed 33 characteristics following the methods of Freyberger et al. (2020). Details of these characteristics

can be found in the appendix of Li and Linton (2020). We construct characteristics from fiscal year t − 1 to

explain stock returns between July of year t to June of year t + 1. Following Hou et al. (2015), we adjust returns

of delisted stocks. The method that we apply to estimate the Equation 4 is similar to Li and Linton (2020). We

only include firms with at least three years of data in Compustat. The values of firm-specific characteristics are

updated annually as most characteristic data are reported every year. We use rolling windows to accommodate

these characteristics-based loadings and the risk factors are estimated correspondingly.

The time span of our in-sample analysis is 50 years, from July 1967 to June 2017 (600 months).

6.3 In-sample Factor-mimicking Portfolios

This section presents portfolios that mimic the annually updated risk factors estimated through Equation 5. In

this study, we choose the number of unobservable factors in Equation 3 to be three. In Li and Linton (2020), they

compared the effects of the number of factors through a simulation study, concluding that underestimating the

number of factors can be problematic. However, their discussions mainly focused on the estimation of mispricing

functions. We only have four dynamic index variables, and therefore, we follow the renowned research of Fama

and French (1993) to set the number of factors to be three. According to the literature, three factors can capture

the most important common variation in asset excess returns.

The methods are introduced in subsection 3.2, and we utilize all 600 months of data and construct three such
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portfolios every year, assuming the number of risk factors in Equation 3 to be three. Then, we conclude the

descriptive statistics of these three sub-portfolios in Table 3. The zero mean and unit variance are determined by

the constraints in estimation. As for the correlation between risk factors and those sub-portfolios using observa-

tions of all 600 months, our first step works very well because the diagonal elements of correlation are quite high

while the off-diagonal elements are negligible. That demonstrates that each sub-portfolio imitates only the target

risk factor’s variation accurately and leaves the rest uncorrelated. The weights put on each asset for these sub-

portfolios are calculated through a constrained optimization, which restricts the similarity between sub-portfolios

and risk factors. Furthermore, during certain years, the sub-portfolios behaved in the opposite direction of the

imitated factor, which can also influence the average correlation over 600 months. The annual correlation can be

found Table 7, where some negatively correlated periods are presented.

6.4 Utility Function

We utilitze the classic Constant Relative Risk Aversion (CRRA) utility function to model function u(W ) in

Equation 8:

u(W ) =







W 1−ξ

1−ξ
if ξ > 1;

ln(W ) if x = 1,

where ξ is an integer and ξ = W ∂2u(W )/∂W 2

∂u(W )/∂W
, measuring the level of risk aversion. Therefore, under this setting,

the investor is risk-averse and tries to maximize his expected utility function through factor-mimicking and factor-

timing portfolio strategy. The CRRA utility function is twice differentiable, which can further facilitate our

optimization algorithm.

6.5 Selection of Truncation Number

The value of L in Equation 16, which is the truncation number in polynomials, needs to be determined here.

Unfortunately, to the best of our knowledge, there is no rule of thumb for the best choice of L. We refer to

Dong et al. (2015) and Dong et al. (2016a), where the authors determined L according to the number of obser-

vations n. However, the n in this study ranged from 468 to 2928. After trading off the computation burden and

approximation accuracy, we choose L to be four throughout the empirical study.
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Table 1: Index Variable Summary

Descriptive Statistics Correlation Matrix

Index name T Mean Variance Median Max Min Skewness Kurtosis DS TS Trend Ln(DP%) RF%

DS 600 1.08 0.2 0.94 3.38 0.55 1.82 7.34 1.00

TS 600 1.12 1.39 1.23 3.40 -3.07 -0.32 2.72 0.09 1.00

Trend 600 0.03 0.01 0.05 0.22 -0.4 -1.24 5.63 -0.27 0.07 1.00

Ln(DY%) 600 1.00 0.17 1.05 1.83 0.10 -0.09 2.07 0.46 -0.26 -0.12 1.00

RF% 600 0.39 0.08 0.41 1.35 0.00 0.51 3.44 0.23 -0.68 -0.01 0.65 1.00

This table documents the descriptive statistics of the index variables that are used in this empirical study as well as the correlations among them.

To be consistent with most of the literature, we use the percentage values of DP and RF.

Table 2: Tests Summary

Unit root test Autocorrelation

Index name T time trend p-value (Trend) ∆Yt p-value (∆Yt) ρ3 ρ6 ρ9

DS 600 −2.3 × 10−5 -0.81 −3.82× 10−2 -3.43 0.85 0.68 0.54

(2.8× 10−5) (1.11× 10−2)

TS 600 9.27× 10−5 1.23 −3.6 × 10−2 -3.26 0.88 0.77 0.69

(7.51× 10−5) (1.1× 10−2)

Trend 600 4.1× 10−6 0.47 −7.59× 10−2 -4.86 0.70 0.37 0.12

(8.75× 10−6) (1.56× 10−2)

Ln(DY%) 600 −1.8 × 10−5 -1.44 −8.86× 10−3 -1.72 0.98 0.96 0.94

(1.25× 10−5) (5.16× 10−3)

RF% 600 −6.6 × 10−5 -3.22 −5.48× 10−2 -4.23 0.94 0.90 0.87

(2.05× 10−5) (5.16× 10−3)

This table summarizes the results of unit root tests and autocorrelations of those index variables. It reports the estimates,

standard errors (in parentheses) and t-statistics of Dickey-Fuller test with trend individually. Autocorrelation column

illustrates the correlation between the series and lag 3, lag 6 and lag 9 respectively, dennoted as ρ3, ρ6, ρ9.

Table 3: Factor-mimicking Portfolios Summary

Descriptive Statistics Average Correlation

Index name T Mean Variance Median Max Min Skewness Kurtosis f̂1 f̂2 f̂3

q̂1 600 0.00 1.00 0.08 2.81 -3.10 -0.38 3.33 0.48 -0.01 0.13

q̂2 600 0.00 1.00 0.03 2.70 -3.20 -0.15 3.42 -0.11 0.59 0.05

q̂3 600 0.00 1.00 0.05 2.60 -2.79 -0.10 2.82 0.06 -0.03 0.63

This table presents the descriptive statistics of factor-mimicking portfolios and their correlations with estimated risk factors.

q̂1, q̂2, and q̂3 are constructed portfolios through all 600 months’ data while f1, f2, and f3 are three T × 1 factors estimated

by rolling windows.
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Figure 1: The Plot of DS
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Figure 2: The Plot of DS
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(b) Autocorrelation Plot of Trend

Figure 3: The Plot of Trend
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(b) Autocorrelation Plot of Ln(DY%)

Figure 4: The Plot of Ln(DY%)
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Figure 5: The Plot of RF

6.6 Estimation of Dynamic Signals

This section presents the estimates of single-index coefficient vector θ and the results of the corresponding hy-

pothesis tests. We use the CRRA utility function with various risk aversion levels ξ. Meanwhile, we also test the

null hypothesis in section 5 to examine whether some of the coefficients of dynamic variables are significantly

different from 0. These tests are used to show the importance of this dynamic information during the second step

of portfolio management, namely factor-timing.

During our estimation, all the optimization processes converged, and the optimized values are reported. The

in-sample results are based on the data for all 600 months and the estimation procedures are repeated under

different risk-aversion levels ξ = 2, ξ = 5, and ξ = 10. We then obtain the values of the objective function

Equation 24, denoted as V(B̂, θ̂). The hypothesis tests are conducted by setting θi = 0, where i indicates the ith

index variable. We denote the value of the objective function Equation 24 under H0 : θi = 0 as V(B̂, θ̂i = 0). In

addition, χ2 statistics are calculated as T∆V = T (V(B̂, θ̂i = 0)−V(B̂, θ̂)).

Table 4: Index Variable Summary

ξ = 2 ξ = 5 ξ = 10

Index name T θ̂i V(B̂, θ̂i = 0) V(B̂, θ̂) T∆V θ̂i V(B̂, θ̂i = 0) V(B̂, θ̂) T∆V θ̂i V(B̂, θ̂i = 0) V(B̂, θ̂) T∆V

DS 600 0.15 0.23 0.006 134.4 0.06 0.0001 2.5× 10−8 0.066 0.08 0.0026 4.9× 10−10 1.56

TS 600 0.19 0.064 0.006 34.8 -0.34 0.0008 2.5× 10−8 0.481 -0.06 5.2× 10−9 4.9× 10−10 0

Trend 600 0.03 0.01 0.006 2.4 0.06 1× 10−6 2.5× 10−8 0.006 0.03 8.1× 10−10 4.9× 10−10 0

Ln(DY%) 600 -0.97 0.06 0.006 32.4 -0.93 3.2× 10−6 2.5× 10−8 0.002 -0.995 2× 10−8 4.9× 10−10 0

This table reports the estimates and hypothesis test of dynamic index variables. θ̂i is the estimate of the coefficient of the ith index variable while V represent the value of the objective

function. ∆V = V(B̂, θ̂i = 0)− V(B̂, θ̂).

The findings in Table 4 differ across the risk-aversion levels. When the magnitude of risk aversion is low, the

influence of the dynamic index variables is significant. With ξ = 2, nearly all of the values of T∆V exceed the

95% critical value of χ2(1), which is 3.84, except for DS. As the risk-aversion becomes larger, the importance of

these dynamic variables declines. This can be confirmed when ξ = 5 and ξ = 10, where all the four variables are

insignificant. We compare the values of the objective function Equation 24, and most of them are quite similar,
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both close to zero. That means the moment conditions in Equation 24 can be satisfied even if we restrict the

coefficient of the ith index variable to zero. Nevertheless, we cannot reject their joint significance.

6.7 In-sample Performance of Factor-timing Portfolios

This section presents portfolio performance estimated using in-sample data. As mentioned previously, there are

two steps in the construction of our dynamic portfolio, namely, factor-tilt and factor-timing steps. In subsec-

tion 6.3, we describe how to build the sub-portfolios that mimic the behavior of risk factors. This section solves

the second step, factor-timing: choosing the time-varying weights for the risk-free asset and risky sub-portfolios.

The dynamic weights are determined by a single-index function with a set of index variables. These variables

capture investment opportunities. We standardize the amount of investment to be 1 unit and take the monthly

returns as the wealth gleaned by the investor. We do not restrict leverage or short-selling in order to check the

influence of the risk-aversion level.

As we have 600 months in total, we record the average returns every year and annual standard deviations in

Table 5 to save the space, and we calculate the Sharpe-ratio directly through mean(Returnt)/SDannual. Ta-

ble 5 shows the in-sample results from July 1967 to June 2017 under all three risk-aversion levels defined in

subsection 6.4, and these results are compared with monthly S&P 500 returns.

Some findings here are significant and worth discussing. Firstly, for investors who have relatively lower risk-

aversion, the average portfolio returns are more rewarding, with some extremely high returns appearing as well.

For example, when the risk-aversion level ξ = 2, the twelve month average monthly returns can be 10.61and 8.

65. As for ξ = 10, the average monthly returns are more normal. Most monthly returns are around 5% except for

some outliers. Secondly, a higher risk-aversion level corresponds to more volatile returns, such as losing -2.33

monthly during the whole year when ξ = 2, provided the standard deviation of the monthly return is 6.44. But

the circumstances can be much more favourable when ξ increases to 5 and 10, with the standard deviation of the

monthly return being 3.98 and 2.81, respectively. Especially under ξ = 10, the returns are quite acceptable and

stable. Thirdly, all of the portfolios under various ξ have a relatively low Sharpe-ratio, compared with S&P 500

returns, which may be due to the high volatility.

In this empirical study, we optimize over three risky sub-portfolios and one risk-free asset without restricting

leveraging or short-selling, and the weights for each asset are plotted in Figure 6. As we can see in (a), when the

relative risk aversion level is low, ξ = 2, the weights for each asset are variable, while the scale of the vertical

axis here is wider than (b) and (c). As we increase ξ, the weights become more stable. Specifically, when the ξ

increases to 10, the only substantial volatility in the weights appeared around the stock crash in March 2000.
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6.8 Out-sample Performance of Factor-timing Portfolios

This section examines the out-sample performance of our two-step portfolio selection procedure. We test the last

six months of the last ten years in our data set for various risk aversion levels. The coefficients of the dynamic

information function are estimated using all of the past information while the sub-portfolios are estimated using

the first six months each year. The "Return" in Table 6 is calculated by substituting the predictors observed at the

beginning of time t + 1. The sub-portfolios are constructed at time t, based on all the available data at the target

year before time t+ 1. Table 6 also lists the assigned weights to each sub-portfolios and the risk-free asset using

1 unit of investment, represented by c1,c2,c3 and c0. To summarize each column, we also provide the mean and

standard deviation values at the end of the table, indicated by "ColMeans" and "ColStd".

As we can see from Table 6, most of the out-sample performance is quite similar to the in-sample performance

Table 5. When the risk-aversion level is low such as ξ = 2, the variation of assets’ weights is the largest and

with an extensive range. Correspondingly, the realized monthly returns are also variable and high on average.

The mean return of all 60 months is 0.36, which is very similar to that of the in-sample result which is 0.37. Not

surprisingly, the out-sample standard deviation 8.88 is bigger than that of the in-sample result (6.44).

When the risk-aversion level increases to ξ = 5, the weights’ volatility decreases, and the mean return also

falls from 0.36 to 0.27, which is similar to the in-sample result (0.29). Compared with the ξ = 2 situation, the

standard deviation of all the assigned weights and the monthly returns decline.

In the case of ξ = 10, all of the weights and monthly returns become more stable and less volatile. However,

the average monthly return here is much lower than the in-sample result ( 0.17), with a smaller standard deviation

of 1.51.

From the above analysis, we can conclude that our out-sample results are robust and vary according to the risk

aversion levels. When the risk-aversion level is low, the investor reassigns his weights broadly and frequently,

with an high average monthly return but high volatility. As the risk aversion level increases, the investor adjusts

his weights more moderately, and the monthly average return and its standard deviation are reduced.
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Table 5: Average Annual In-sample Results

ξ = 2 ξ = 5 ξ = 10 Average Monthly S&P 500

n Return SD Sharpe-ratio Return SD Sharpe-ratio Return SD Sharpe-ratio return SD Sharpe-ratio

468 -0.13 1.07 -0.12 0.15 0.70 0.22 0.06 0.61 0.10 0.01 0.03 0.01

894 -0.15 1.07 -0.14 0.20 0.47 0.41 0.08 0.63 0.13 -0.00 0.03 -0.00

1108 -0.13 1.11 -0.11 0.45 0.66 0.69 0.06 0.72 0.09 -0.02 0.04 -0.02

1199 -2.33 9.36 -0.25 0.10 0.88 0.12 0.04 0.59 0.08 0.02 0.03 0.02

1333 10.61 37.73 0.28 0.09 0.74 0.12 0.04 0.80 0.04 0.01 0.03 0.01

1409 -0.23 1.38 -0.16 0.10 0.77 0.13 0.06 0.82 0.08 -0.00 0.03 -0.00

1466 -0.16 1.03 -0.16 -1.02 3.50 -0.29 0.08 0.70 0.12 -0.01 0.04 -0.01

1560 -0.10 1.12 -0.09 0.35 1.19 0.30 0.05 0.70 0.07 0.00 0.07 0.00

1494 0.19 2.89 0.06 0.32 1.25 0.26 0.06 0.59 0.10 0.01 0.04 0.01

1292 0.52 7.48 0.07 0.14 1.29 0.11 0.03 0.60 0.05 -0.00 0.02 -0.00

1393 -0.12 0.73 -0.16 0.08 0.92 0.09 0.03 0.58 0.06 -0.00 0.03 -0.00

1340 -0.10 0.84 -0.12 0.38 0.94 0.41 0.05 0.79 0.06 0.00 0.03 0.00

1285 0.39 2.92 0.13 -0.13 5.27 -0.02 0.09 0.61 0.16 0.01 0.04 0.01

1181 -0.12 0.76 -0.16 -0.68 8.15 -0.08 0.03 0.57 0.06 0.01 0.03 0.01

1110 -0.15 0.83 -0.18 0.82 2.08 0.39 0.05 0.75 0.07 -0.01 0.04 -0.01

1044 -0.09 1.34 -0.07 -0.05 1.64 -0.03 -0.07 0.59 -0.11 0.04 0.03 0.04

1125 -0.73 1.72 -0.42 0.12 1.15 0.10 0.05 0.75 0.07 -0.01 0.02 -0.01

2192 -0.88 1.83 -0.48 -1.83 13.38 -0.14 0.05 0.73 0.06 0.02 0.03 0.02

2236 8.65 16.35 0.53 -0.87 2.35 -0.37 0.06 0.77 0.07 0.02 0.03 0.02

2273 0.07 0.53 0.13 0.08 0.87 0.09 0.05 0.95 0.05 0.02 0.03 0.02

2235 0.60 2.48 0.24 0.02 0.63 0.04 0.04 0.73 0.05 -0.01 0.06 -0.01

2270 -0.02 1.15 -0.02 0.28 0.95 0.30 0.09 0.58 0.16 0.02 0.02 0.02

2405 -0.33 1.19 -0.28 0.24 0.82 0.29 0.09 0.61 0.15 0.01 0.02 0.01

2376 2.03 3.87 0.53 0.02 1.00 0.02 0.03 0.63 0.05 0.01 0.05 0.01

2323 0.09 0.62 0.14 3.80 9.31 0.41 0.05 0.66 0.08 0.01 0.02 0.01

2344 0.05 0.68 0.08 2.45 3.21 0.76 0.03 0.61 0.05 0.01 0.01 0.01

2434 0.06 0.69 0.09 0.03 1.07 0.03 0.05 0.63 0.08 0.00 0.01 0.00

2548 -0.87 11.71 -0.07 -0.04 0.95 -0.04 0.10 0.56 0.17 0.01 0.02 0.01

2741 0.26 1.06 0.25 0.15 0.59 0.25 0.15 0.69 0.21 0.02 0.02 0.02

2928 0.10 0.55 0.19 0.14 0.74 0.18 0.25 0.53 0.47 0.02 0.04 0.02

2894 0.10 0.68 0.14 -0.03 1.90 -0.01 0.38 0.67 0.57 0.02 0.03 0.02

2905 0.11 0.73 0.16 -0.14 2.53 -0.05 0.25 0.64 0.39 0.02 0.05 0.02

2804 0.13 0.89 0.15 2.60 7.64 0.34 7.55 18.53 0.41 0.01 0.03 0.01

2570 0.10 0.69 0.14 -1.02 4.43 -0.23 0.95 1.64 0.58 -0.01 0.04 -0.01

2516 0.26 1.33 0.20 0.11 0.94 0.12 0.07 0.61 0.12 -0.02 0.05 -0.02

2491 0.11 0.89 0.13 0.07 1.05 0.07 0.03 0.60 0.05 -0.00 0.05 -0.00

2402 0.20 0.97 0.20 0.07 0.97 0.07 -0.04 0.58 -0.08 0.01 0.02 0.01

2326 0.06 0.90 0.07 0.01 0.50 0.03 0.11 0.58 0.18 0.01 0.02 0.01

2241 0.06 0.69 0.09 0.46 0.96 0.48 0.13 0.59 0.23 0.00 0.02 0.00

2178 0.12 0.73 0.17 7.04 15.93 0.44 0.15 0.60 0.25 0.02 0.02 0.02

2113 0.05 0.68 0.07 0.14 0.66 0.20 0.11 0.57 0.18 -0.01 0.04 -0.01

2023 -0.00 0.57 -0.00 -0.86 2.32 -0.37 0.04 0.85 0.04 -0.03 0.08 -0.03

2007 0.03 0.53 0.05 0.23 1.87 0.13 0.02 0.69 0.03 0.01 0.04 0.01

1924 -0.02 0.87 -0.02 0.02 1.14 0.02 -0.04 0.75 -0.05 0.01 0.02 0.01

1990 0.01 0.88 0.01 0.04 0.66 0.07 0.03 0.80 0.03 0.00 0.04 0.00

1937 0.00 0.89 0.00 -0.02 0.59 -0.03 0.01 0.79 0.01 0.02 0.02 0.02

1909 0.01 0.89 0.01 -0.02 0.94 -0.02 -0.01 0.70 -0.01 0.02 0.01 0.02

1872 0.00 0.69 0.01 -0.03 0.93 -0.04 -0.00 0.63 -0.00 0.01 0.02 0.01

1841 0.00 0.70 0.01 0.05 0.93 0.06 0.00 0.63 0.01 0.00 0.04 0.00

1826 0.01 0.70 0.02 -0.02 0.90 -0.02 -0.01 0.61 -0.01 0.01 0.01 0.01

Total mean 0.37 6.44 0.06 0.29 3.98 0.07 0.23 2.81 0.08 0.01 0.04 0.17

This table illustrates the in-sample results under various risk-aversion levels annually from July 1967- June 2017. n represents the number of stocks included in the

portfolio. Both returns and standard deviations are calculated based on each year’s results. The results of monthly S&P 500 returns are reported for comparison.

No restrictions on leverage or short-selling.
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Table 6: Monthly Out-sample Results Comparison

ξ = 2 ξ = 5 ξ = 10

Year c0 c1 c2 c3 Return c0 c1 c2 c3 Return c0 c1 c2 c3 Return

2008

1.12 0.04 0.05 -0.21 -0.04 -0.14 0.59 0.22 0.32 0.12 0.07 0.73 0.01 0.20 0.65

2.03 -0.13 -0.41 -0.49 0.21 -0.11 0.63 0.18 0.30 0.60 0.11 2.12 -0.37 -0.86 2.67

2.41 -0.21 -0.64 -0.55 0.67 -0.23 0.89 -0.09 0.43 0.22 -0.14 -2.37 1.00 2.51 0.84

2.31 -0.19 -0.58 -0.54 -0.82 -0.20 0.82 -0.02 0.40 0.69 -0.14 -2.31 0.99 2.46 4.20

2.24 -0.17 -0.54 -0.53 -1.28 -0.14 0.69 0.12 0.33 1.35 0.62 11.15 -3.11 -7.65 -6.09

1.85 -0.09 -0.31 -0.45 0.77 -0.11 0.63 0.18 0.30 0.49 0.11 2.02 -0.34 -0.79 3.93

2009

-0.00 1.47 0.79 -1.26 -1.60 0.15 -1.56 2.56 -0.15 6.52 -0.29 0.20 0.24 0.85 2.69

-0.00 1.45 0.83 -1.28 0.73 0.10 -1.08 2.03 -0.06 -0.30 -0.26 0.31 0.03 0.93 0.31

-0.00 1.46 0.81 -1.28 -1.44 0.11 -1.15 2.11 -0.07 0.92 -0.26 0.30 0.04 0.92 -0.44

-0.00 1.49 0.77 -1.25 -0.86 0.06 -0.66 1.60 -0.00 -1.90 -0.25 0.39 -0.13 1.00 -1.87

-0.00 1.45 0.83 -1.28 -0.05 0.03 -0.25 1.19 0.03 1.21 -0.26 0.67 -0.66 1.25 0.82

-0.00 1.39 0.94 -1.33 -0.48 0.02 0.03 0.93 0.03 0.33 -0.39 1.86 -2.80 2.33 -0.63

2010

-0.00 0.22 0.02 0.75 -0.21 -0.01 2.06 -0.73 -0.31 -1.17 -0.00 2.17 -0.84 -0.33 -1.23

-0.00 0.23 0.02 0.75 0.50 -0.01 2.04 -0.72 -0.31 -0.00 -0.00 2.18 -0.84 -0.34 -0.05

-0.00 0.23 0.02 0.75 -0.72 -0.01 2.07 -0.74 -0.31 -2.10 -0.00 2.17 -0.84 -0.33 -2.17

-0.00 0.22 0.03 0.75 0.31 -0.01 1.97 -0.67 -0.30 -2.02 -0.00 2.18 -0.84 -0.34 -2.31

-0.00 0.27 -0.01 0.74 -0.86 -0.01 2.11 -0.78 -0.32 -1.49 -0.00 2.18 -0.83 -0.35 -1.51

-0.00 0.30 -0.03 0.74 -0.71 -0.01 2.39 -1.03 -0.36 -1.00 -0.00 2.17 -0.84 -0.32 -0.97

2011

1.49 -0.90 0.61 -0.20 1.01 0.00 1.07 0.28 -0.35 -0.11 -0.02 0.37 0.66 0.00 0.36

1.02 -0.91 1.10 -0.20 1.42 0.00 1.09 0.26 -0.35 -0.35 -0.02 0.37 0.64 0.01 0.12

1.18 -0.92 0.96 -0.22 -1.19 0.00 1.06 0.28 -0.35 0.45 -0.03 0.39 0.62 0.02 0.09

1.05 -0.92 1.07 -0.21 -1.56 0.00 1.08 0.27 -0.35 0.54 -0.03 0.39 0.62 0.02 0.05

1.31 -0.92 0.83 -0.21 -2.11 0.00 1.04 0.31 -0.34 1.24 -0.03 0.40 0.61 0.02 0.73

1.52 -0.89 0.56 -0.19 -0.78 0.00 1.01 0.33 -0.35 0.78 -0.03 0.43 0.56 0.04 0.70

2012

-33.41 5.01 8.21 21.20 53.27 0.04 0.75 0.17 0.04 1.64 0.19 0.12 0.30 0.39 0.96

31.14 -4.95 -6.39 -18.80 -37.15 0.05 0.76 0.17 0.02 1.23 0.19 0.12 0.30 0.39 0.77

22.59 -3.62 -4.46 -13.50 -6.39 0.05 0.76 0.17 0.03 0.30 0.17 0.12 0.33 0.39 0.16

13.19 -2.17 -2.36 -7.67 13.97 0.05 0.77 0.17 0.01 -1.08 0.18 0.12 0.31 0.39 -0.93

11.36 -1.88 -1.95 -6.53 9.04 0.07 0.79 0.17 -0.03 -0.80 0.23 0.12 0.26 0.38 -0.72

14.33 -2.34 -2.61 -8.37 -4.71 0.07 0.79 0.17 -0.04 0.33 0.27 0.12 0.23 0.38 0.26

2013

1.06 -0.71 2.04 -1.40 0.44 0.05 1.18 -0.87 0.64 -0.30 0.09 0.19 0.36 0.36 -0.04

1.40 -1.02 2.53 -1.91 -0.90 0.05 1.17 -0.85 0.63 0.43 0.09 0.19 0.36 0.36 0.03

1.12 -0.76 2.12 -1.48 0.89 0.05 1.14 -0.77 0.58 -0.64 0.09 0.18 0.37 0.35 -0.17

0.43 -0.12 1.10 -0.41 -0.26 0.05 1.12 -0.72 0.55 0.92 0.10 0.18 0.37 0.35 0.32

1.09 -0.73 2.08 -1.43 -5.69 0.05 1.07 -0.60 0.48 2.90 0.10 0.17 0.40 0.33 0.15

-0.42 0.65 -0.08 0.85 1.06 0.04 1.05 -0.53 0.44 0.94 0.10 0.17 0.40 0.33 0.46

2014

0.01 0.24 0.63 0.13 -1.20 -0.04 2.39 1.34 -2.68 -4.24 0.08 -0.76 1.23 0.45 -3.96

0.01 0.25 0.63 0.12 0.02 -0.05 2.39 1.34 -2.68 0.29 0.09 -0.36 0.89 0.38 0.14

0.01 0.25 0.63 0.12 0.35 -0.05 2.39 1.34 -2.68 0.43 0.09 -0.28 0.82 0.37 0.34

0.01 0.25 0.63 0.12 0.75 -0.05 2.39 1.34 -2.68 1.40 0.09 -0.37 0.90 0.38 0.97

0.01 0.26 0.62 0.11 1.29 -0.06 2.40 1.34 -2.69 1.29 0.11 0.00 0.59 0.29 1.15

0.01 0.25 0.62 0.12 -0.01 -0.05 2.39 1.34 -2.68 0.33 0.10 -0.19 0.75 0.34 0.08

2015

0.37 0.36 1.09 -0.82 -1.66 -0.35 0.80 0.34 0.21 -0.13 0.40 0.20 0.29 0.12 -0.06

0.50 0.54 1.42 -1.46 2.83 -1.35 4.17 -1.20 -0.62 4.29 0.37 0.20 0.24 0.20 -0.21

0.51 0.55 1.43 -1.48 -0.58 -1.32 4.08 -1.16 -0.60 -0.60 0.36 0.20 0.22 0.22 -0.05

0.42 0.43 1.21 -1.05 2.27 -0.56 1.51 0.01 0.04 3.29 0.39 0.19 0.27 0.15 1.19

2.79 3.58 7.06 -12.44 -3.46 0.33 -1.46 1.36 0.77 -0.37 0.31 0.23 0.15 0.31 -0.09

-1.06 -1.50 -2.36 5.92 2.20 0.17 -0.91 1.11 0.64 -0.17 0.28 0.27 0.10 0.35 -0.04

2016

1.26 -0.15 -0.86 0.75 -1.11 -0.01 1.45 -1.28 0.84 -0.05 0.00 0.09 -0.11 1.02 -0.86

1.37 -0.29 -0.40 0.32 0.19 -0.01 1.12 -0.89 0.78 0.50 0.00 0.11 -0.10 0.99 0.37

1.37 -0.30 -0.35 0.28 1.24 -0.01 1.09 -0.85 0.78 -1.09 0.00 0.11 -0.10 0.99 -0.01

1.36 -0.28 -0.43 0.34 0.80 -0.01 1.03 -0.78 0.76 0.84 0.00 0.13 -0.10 0.97 1.02

1.37 -0.29 -0.40 0.32 -0.18 -0.01 0.94 -0.67 0.74 -2.72 0.00 0.17 -0.09 0.92 -1.29

1.37 -0.33 -0.19 0.15 -0.06 -0.01 0.85 -0.56 0.72 2.38 0.00 0.17 -0.09 0.92 0.18

2017

-0.00 -1.51 2.14 0.37 -0.92 0.60 -1.03 -2.37 3.80 -0.65 0.08 0.25 0.46 0.21 0.04

-0.00 -1.43 2.06 0.37 0.23 0.59 -1.00 -2.32 3.73 0.01 0.10 0.21 0.51 0.18 0.23

-0.00 -1.09 1.72 0.37 1.21 0.34 -0.24 -1.03 1.93 -0.14 0.14 0.10 0.65 0.11 0.53

-0.00 -0.71 1.35 0.37 1.56 0.25 0.10 -0.40 1.06 0.52 0.21 -0.08 0.87 0.00 0.85

-0.00 -0.60 1.23 0.37 1.18 0.24 0.16 -0.27 0.87 -0.08 0.26 -0.20 1.01 -0.07 1.18

-0.00 -0.30 0.93 0.37 0.28 0.24 0.25 -0.02 0.54 0.07 0.60 -1.08 2.03 -0.55 0.45

ColMean 1.58 -0.18 0.47 -0.88 0.36 -0.02 0.95 0.03 0.04 0.27 0.08 0.53 0.15 0.25 0.07

Colstd 7.15 1.42 2.03 4.75 8.88 0.30 1.18 1.02 1.21 1.58 0.19 1.67 0.81 1.22 1.51

This table demonstrates the out-sample results under various risk-aversion levels of the last six months from 2008- 2017. c0 represents the weights of the

risk-free asset while c1 c2 and c3 show the weights of three sub-portfolios individually. "Return" represents the monthly return. "ColMean" and "ColStd"

show the column means and standard deviations, respectively. No restrictions on leverage or short-selling.
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7 Conclusion

This paper develops and tests a two-step portfolio selection procedure which relies on a large universe of in-

vestable assets and a set of dynamic predictors of factor-related returns. The first step in the procedure creates

a collection of well-diversified mimicking portfolios to approximate the returns of pervasive risk factors. The

second step uses a set of predictors including default spread, term spread, price trend, and dividend yield. These

predictors are combined into a single-index function, which in turn determines a dynamic allocation of portfo-

lio weights across the factor-mimicking portfolios in order to maximize investor’s expected utility. Due to the

nonstationarity of some predictive variables, we apply orthogonal series to approximate the single-index function

in estimation. We apply the technique to fifty years of monthly U.S. data and find very good performance both

in-sample and out-of-sample. We show empirically that the factor mimicking portfolios have high correlation

with the targeted factors and low correlation with each other. Our dynamic portfolios perform well, both for high

risk-aversion and low risk aversion investors, providing high average returns and also high return volatility for the

less risk-averse and correspondingly lower average returns and lower volatility for the more risk-averse investor.
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8 Appendix

8.1 Proof

Proof of Theorem 1 : Write the subportfolio vector Qt(X) as:

Qt(X) =
n

∑

i=1

B(Xi)yit.

Because:

yit = G(Xi)Ft + ǫit.

Then, substitute yit into Qt(X):

Qt(X) =
∑n

i=1B(Xi)(G(Xi)Ft + ǫit)

= 1
n

∑n
i=1 ΓG(Xi)

⊺(G(Xi)Ft + ǫit)

= Γ( 1
n

∑n
i=1(G(Xi)

⊺G(Xi))Ft +
1
n

∑n
i=1(G(Xi)

⊺ǫit))

Given:

p lim
n→∞

1

n

n
∑

1=1

G(Xi)
⊺G(Xi) = MG,

where MG is an identity matrix, and

E(ǫit|Xi,Ft) = 0.

Therefore, we have:

p lim
n→∞

1

n

n
∑

1=1

G(Xi)
⊺ǫit = 0.

Thus,

p lim
n→∞

Qt(X) = ΓMGFt = ΓFt.

This shows that the factor-mimicking portfolio is a linear combination of risk factors given Γ is a non-zero

matrix. �

Proof of Theorem 2 : Let F̃ represent the demeaned risk factor matrix while

ỹt = G(X)F̃t + ǫt.

Correspondingly, we have:

Q̃t(X) = B(Xi)ỹt

= 1
n
ΓG(X)⊺ỹt.

And then,

E(Q̃t(X)Q̃t(X)⊺|X) = Γ( 1
n
G(X)⊺G(X))E(F̃ F̃ ⊺)( 1

n
G(X)⊺G(X))Γ⊺+

Γ( 1
n
G(X)⊺ 1

n
E(ǫtǫ

⊺
t )(G(X))Γ⊺.
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Given E(ǫit|Xi,Ft) = 0, the cross terms are E(F̃ ǫ̃t) = 0.

Taking the second term and using the Euclidian matrix norm:

||Γ( 1
n
G(X)⊺ 1

n
E(ǫ̃tǫ̃t

⊺)G(X))Γ⊺|| 6
1
n
||Γ 1

n
(G(X)⊺G(X))Γ⊺|| × ||E(ǫtǫ⊺t )|| →n→∞

1
n
||ΓΓ⊺|| × ||E(ǫtǫ⊺t )|| →n→∞ 0

The conclusion of the above formula is due to

p lim
n→∞

1

n

n
∑

1=1

G(Xi)
⊺G(Xi) = MG,

and ||E(ǫtǫ⊺t )|| has bounded eigenvalues for all n.

Furthermore, the well-chosen coefficient matrix Γ can give:

E(Q̃t(X)Q̃t(X)⊺|X) = IJJ

�

Proof of Theorem 3 : We decompose the investment returns of optimal asset-by-asset portfolio and risk-free

rate as:

rft +RF + ǫ∗t ,

where the RF is the optimal factor returns since the return generation function states the risk premiums come

from risk factors. The ǫ∗t is the zero mean idiosyncratic returns.

Since

E(ǫit|Xi,Ft) = 0,

it follows from the second-order stochastic dominance that the expected utility has the following relationship:

E(u(rft +RF )) > E(u(rft +RF + ǫ∗t )).

because zero mean ǫ∗t only contributes variance rather than returns.

According to Theorem 1 and Equation 17, the restricted portfolio optimally combines the factors’ returns.

Therefore, our two-stage portfolio’s return can be written as:

rft +RF + ǫ∗∗t ,

where the only difference is the idiosyncratic returns. Our goal now is to show that:
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E(u(rft +RF + ǫ∗∗t )|X, zt) →n→∞ E(u(rft +RF )|X, zt).

Next, we take the Taylor expansion of u(rft +RF + ǫ∗∗t ) around rft +RF :

u(rft +RF + ǫ∗∗t ) = u(rft +RF ) +
d

d(rft +RF )
u(rft +RF )ǫ

∗∗

t +
d2

d(rft +RF )
u(rft +RF )

2ǫ∗∗2t .

We take the expection on both sides, given E(ǫ∗∗t ) = 0 and
d2u(·)
dW 2 > −c. Therefore, we have:

E(u(rft +RF + ǫ∗∗t )) > E(u(rft +RF ))− cE(ǫ∗∗2t ),

where p limn→∞E(ǫ∗∗2t ) = 0, according to Theorem2. Therefore, we have :

p lim
n→∞

E(u(rft +RF + ǫ∗∗t )|X, zt)− E(u(rft +RF )|X, zt) = 0,

which completes the proof. �
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Table 7: Annual Correlation Between Subportfolios and Risk Factors 1-20

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

f1 0.61 -0.49 0.68 0.69 0.66 0.73 -0.10 -0.16 0.72 0.79 0.73 0.69 0.77 -0.17 0.64 0.87 0.65 0.71 0.51 0.75

f2 0.89 0.64 0.70 0.75 0.65 0.79 0.60 0.91 0.71 0.79 0.90 0.92 0.97 -0.01 0.79 0.74 0.79 0.86 0.88 0.41

f3 0.80 0.81 0.63 0.40 0.66 0.39 0.75 0.64 0.40 0.72 0.86 0.74 0.96 0.56 0.72 0.86 0.84 0.66 0.78 0.55

This table shows the annual correlation between factor-mimicking subportfolios and corresponding risk factors from Jul. 1967- Jun.1987.

Table 8: Annual Correlation Between Subportfolios and Risk Factors 21-40

21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40

f1 0.78 0.86 0.54 0.58 0.22 0.76 0.68 0.16 0.60 0.74 0.75 0.67 0.72 0.73 0.69 0.67 0.96 0.66 0.73 0.76

f2 0.77 0.79 0.73 -0.24 0.93 0.66 0.86 -0.06 0.87 0.81 0.94 0.76 0.22 -0.06 0.97 0.94 0.92 0.36 0.93 0.93

f3 -0.40 0.72 0.76 0.64 0.71 0.83 0.70 0.57 0.73 0.67 0.72 0.58 0.66 0.60 0.79 0.77 0.92 0.68 0.79 0.72

This table shows the annual correlation between factor-mimicking subportfolios and corresponding risk factors from Jul. 1987- Jun.2007.

Table 9: Annual Correlation Between Subportfolios and Risk Factors 41-50

41 42 43 44 45 46 47 48 49 50

f1 -0.22 0.73 -0.15 0.72 -0.55 -0.08 0.33 0.74 0.63 0.77

f2 0.63 0.76 0.29 0.73 0.65 0.34 -0.23 0.81 0.83 0.81

f3 0.64 0.58 0.65 0.61 0.82 0.51 0.87 0.86 0.82 0.53

This table shows the annual correlation between factor-mimicking subportfolios

and corresponding risk factors from Jul. 2007- Jun.2017.
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