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Abstract

This paper proposes the method of Specification-LASSO in a flexible semi-parametric regression model

that allows for the interactive effects between different covariates. Specification-LASSO extends LASSO and

Adaptive Group LASSO to achieve both relevant variable selection and model specification. Specification-

LASSO also gives preliminary estimates that facilitate the estimation of the regression model. Monte Carlo

simulations show that the Specification-LASSO can accurately specify partially linear additive models with

interactive regressors. Finally, the proposed methods are applied in an empirical study, which examines the

topic proposed by Freyberger et al. (2020), which argues that firms’ sizes may have interactive effects with

other security-specific characteristics, which can explain the stocks excess returns together.
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1 Introduction

In a data-rich era, researchers are more likely to suffer both "variable selection" and "specification" challenges.

"Variable selection" problem is incurred due to the ease of data attainability, so vast of data are available when

researchers intend to model. This seems to be trivial if the number of observations n is relatively large compared

with the number of potential covariates P . However, in recent empirical studies that have large P and small n,

which causes the classical analysis tool failing to work. Therefore, it is crucial to determine which subset of

candidate variables should be considered. Meanwhile, another challenge comes from the model specification, as

one may be dazzled to choose a suitable model from a model zoo. In general, all parametric analyses have the risk

of misspecification. Thus, nonparametric analysis is introduced to relax the functional form restrictions. Although

this helps to increase the model flexibility, the "curse of dimensionality" causes the extremely low convergence

rate of estimation when the dimension of independent variables is more than three.

Suppose we observe a sample of data {(Yi,Pi) : 1 6 i 6 n}, where i represents the ith individual. Pi is a

P ×1 large dimensional vector of potential covariates where only the Q×1 subset Qi contains relevant regressors

to explain or predict the variation of Yi, which presents a sparse model if Q << P .

We suppose:

E(Yi|Pi) = θi + h(Qi), i = 1, 2, . . . , n, (1)

where θi is the intercept whereas h(Qi) is an unknown multi-variate function of Qi. Most researchers specify an

additive semi-parametric structure on h(Qi) as:

h(Qi) =

Q
∑

q=1

fq(Xiq), (2)

where fq(Xiq) is an unknown uni-variate function. Models like Equation 2 are called additive nonparametric

regressions and are widely discussed by Hastie and Tibshirani (1990), Linton (1997), Linton (2000), and Linton

and Härdle (1996).

The Equation 2 avoids the curse of dimensionality by imposing an additive structure, but can be inefficient

if some of the relevant covariates only have linear effects as the rate of convergence for nonparametric function

fq(Xqi) is slower than O(n−1/2).

Therefore, a partially linear additive semi-parametric model is proposed to take advantages of linear effects as:

h(Qi) = θ +
L∑

l=1

βlXil +

Q
∑

q=L+1

fq(Xiq), (3)

where we distinguish L linear effects from Qi, and the coefficients of linear part can be estimated at the rate of

convergence O(n−1/2), as discussed in Wang et al. (2007) and Ma and Yang (2011). Similar models of Equation 3

are also studied by Li (2000), Fan and Li (2003) and Liang et al. (2008).
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Unfortunately, both additive models omit potential interactions between covariates. Pairwise interactions be-

tween covariates are quite common in both economic and financial studies.

Example 1.1. In macroeconomics, most production functions specify a interactive term of capital and labour

inputs such as:

Cobb-Douglas: Y = ΓXα
CX

β
L + ǫ

Example 1.2. In microeconomics, Deaton and Muellbauer (1980) document the utility model of a household

(Y ) containing interactions between eating and drinking (XE, XD) for foodstuffs, housing and fuel (XH , XF ) for

shelters, and television and sports (XT , XS) for entertainment.

Y = mED(XE, XD) +mHF (XH , XF ) +mTS(XT , XS) + ǫ

Example 1.3. In environment studies, Dong et al. (2019) study effects of CO2 and solar irradiance (SI) on the

global sea level (YSL) rise. They specify the model as:

YSL = m(XCO2
, XSI) + ǫ,

and they verify the interactive effects between CO2 (XCO2
) and solar irradiance (XSI) through empirical results.

Example 1.4. In finance, Freyberger et al. (2020) argue that assets returns at time t is predictable by stock

characteristics, such as capitalization and book-to-market ratio, at t− 1 as

Yt = θt +

interaction with firm size Xs
︷ ︸︸ ︷

Q
∑

q 6=s

mqs(Xqt−1 ·Xst−1) +

uni-variate
︷ ︸︸ ︷

Q
∑

q=1

mq(Xqt−1),

and they find significant effects of interactions between firms’ sizes and other characteristics. In this paper, we

will revisit this study using our methods.

Interactions among covariates refer to the circumstance that marginal effects of the jth variable Xj on Y are

determined by other relevant covariates. Sperlich et al. (2002) illustrate the importance of interactions in the addi-

tive model, and propose a marginal integration style estimation and test methods to solve the potential interactions

in the model. However, their methods cannot be applied to a high-dimensional case, not only due to the enormous

workload but also the failure of estimation when P > n. From the above examples and Sperlich et al. (2002), we

can conclude that higher-order interactions are barely discussed due to both the curse of dimensionality and in-

terpretation issues. In this paper, we mainly discuss pairwise interactions among variables, although our methods

can be easily extended to higher-order interactions.
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Based on the aforementioned research and examples, it is more reasonable to expand h(Qi) in Equation 2 to

three components, including linear, nonlinear and pairwise interactive parts.

Compared with specifying the structure of an unknown multivariate function h(Qi), selecting relevant vari-

ables under a high-dimensional setting is more widely discussed. The most popular way for achieving this

goal is LASSO (Least Absolute Shrinkage and Selection Operator) style variables selection methods. Tibshi-

rani (1996) proposes this method to perform both variable selection and regularization in the linear model under

high-dimensional cases.

min
α

n∑

i=1

(

Yi −
W∑

j=1

αjXij

)2

+ λn

W∑

j=1

|αj|, (4)

In Equation 4, λn is a data driving tuning parameter, and the attractive property of LASSO is that it can achieve

initial selection by shrinking some α = 0 and estimation even if P >> n. A necessary condition for consistent

selection of LASSO is discussed by Zhao and Yu (2006) and Zou (2006), which is called irrepresentable condition

(discussed in subsection 4.1). This condition restricts the correlation between relevant and irrelevant components

to be relatively small.

To relax this condition, Zou (2006) proposes Adaptive LASSO, which can achieve consistent selection under

mild conditions:

min
β

n∑

i=1

(

Yi −
W∑

j=1

βjXij

)2

+ λn

W∑

j=1

ŵj|βj|, (5)

where the weight ŵj is data-dependent and typically chosen as ŵj = |α̂j|−γ for some γ > 0, and α̂j is a

preliminary consistent estimate in Equation 4. Xj with a smaller estimate α̂j will be penalized more severely, and

the variable with α = 0 will be smoothed out.

As for selecting nonparametric functions, Lin and Zhang (2006) introduce COSSO (COmponent Selection

and Smoothing Operator), where they consider the model selection in a general setting of the smoothing spline

analysis of variance (SS-ANOVA) framework, shown as:

h(Xi) = b+
d∑

j=1

fj(X
(j)
i ) +

∑

j<k

fjk(X
(j)
i , X

(k)
i ) + . . . .

This model can provide large flexibility in terms of the form of nonparametric functions, such as higher dimen-

sional functions. However, in COSSO, it only works under P < n, which means variables considered are not

allowed to exceed the number of observations. Furthermore, Lin and Zhang (2006) do not give a detailed discus-

sion of the selection of the linear part. Finally, this selection model is not facilitated with the initial estimation.

All of these issues will be solved by our method.

Moreover, Huang et al. (2010) introduce a selection and estimation method of an additive nonparametric model

inspired by both group LASSO as in Yuan and Lin (2006) and adaptive group LASSO as in Wang and Leng
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(2008). They use a linear combination of B-splines basis φk, 1 > k > mn to approximate any potential unknown

function as:

fnj(x) =
mn∑

k=1

βjkφk(x).

Next, they consider the penalized least squares criterion

Ln(µ, βn) =
n∑

i=1

[Yi − µ−
P∑

j=1

mn∑

k=1

βjkφk(Xij)]
2 + λn

P∑

j=1

ŵnj‖βnj‖2,

where λn is a tuning parameter while ‖βnj‖2 is the L2 norm of the jth coefficient vector βnj = (βj1, . . . , βjmn
)⊺,

and

ŵnj =







‖β̃nj‖−1
2 for ‖β̃nj‖2 > 0

∞ for ‖β̃nj‖2 = 0
,

where β̃nj is an initial and consistent estimate. Huang et al. (2010) also compare adaptive group LASSO model

with COSSO by Lin and Zhang (2006), concluding that, when the number of observations is small, adaptive

group LASSO has much higher accuracy in terms of selecting relevant variables in the semi-parametric additive

model.

This paper proposes a Specification-LASSO (S-LASSO) for both variables selection and model specification

of a partially linear additive semi-parametric model with interactions, which can be applied when P > n.

S-LASSO can achieve variables selection, model specification, and initial estimation at the same time. S-LASSO

firstly use levels, B-splines bases and pairwise tensor products of all potentially relevant variables to approximate

linear, nonlinear and interactive effects, respectively, and then it extends a two-step procedure to give consistent

selection.

In the first step, S-LASSO uses ordinary LASSO to consider all bases indifferently to attain the initial selection

and estimates. In the second step, S-LASSO clusters these bases into different groups according to linear, non-

linear and interactive parts, and then an adaptive group LASSO is applied to give a final selection and estimation

results. The estimates from the first step help the second step to set group-specific penalty-weighting parameters,

which leads to the consistency of selection.

In the empirical work, we employ S-LASSO to study a characteristics-based asset pricing model. In Freyberger

et al. (2020), they assume assets excess returns can be predicted by security-relevant characteristics and their

interaction with the firm’s size:

Yt = θt +

interaction with firm size Xs
︷ ︸︸ ︷

Q
∑

q 6=s

mqs(Xqt−1 ·Xst−1) +

uni-variate
︷ ︸︸ ︷

Q
∑

q=1

mq(Xqt−1),

where Yt is a n × 1 vector of assets excess returns at time t while Xjt−1 is a n × 1 vector of asset-specific

characteristic at time t − 1. However, they fail to consider the potential linear effects of characteristics, which
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have a quicker convergence rate and less computational burden. Furthermore, they analyse interactive effects

by specifying the form of pairwise interaction as Xqt−1 ·Xst−1 (elementwise product), which is quite restrictive

since mqs(Xqt−1 ·Xst−1) 6= mqs(Xqt−1,Xst−1) generally. S-LASSO can overcome this limitation by considering

the linear effect and not restricting the form of interactions. We will illustrate these through both simulation and

empirical studies.

The rest of the paper is organized as follows. Section 2 presents the model that S-LASSO is working on;

Section 3 provides procedures for S-LASSO to work; Section 3 illustrates the theoretical results; Section 4 gives

simulated experiments; Section 5 demonstrates an empirical study; Section 6 concludes the paper. All proofs and

other materials are arranged in the Appendix.

2 Model Setup

Suppose we observe a sample data (Y,P ), where Y presents the n × 1 vector of dependent variables while P

denotes the n× P matrix of potential covariates (X1,X2, . . . ,XP ), allowing for P > n.

We assume there is an n×Q matrix Q = (X1,X2, . . . ,XQ) that is relevant to explain or predict the variation

of Y and Q ⊂ P . We restrict that Q is fixed, whereas P is diverging as sample size n → ∞. We propose a

sparse structure by assuming Q is relatively small as:

Y = θ + h(Q) +U ,

E(Y |P ) = θ + h(Q), (6)

where U is an n × 1 vector of idiosyncratic errors ǫi with E(U |P ) = 0; h(Q) is a multi-variate unknown

function.

We also specify a partially linear additive semi-parametric model with interactive terms on h(Q) as:

E(Y |P ) = θ + h(Q) = θ +

interactive
︷ ︸︸ ︷

S∑

16s<s′6S

mss′(Xs,Xs′)+

uni−variate
︷ ︸︸ ︷

Q
∑

q=1

mq(Xq) (7)

= θ +

interactive
︷ ︸︸ ︷

S∑

16s<s′6S

mss′(Xs,Xs′)+

nonlinear
︷ ︸︸ ︷

R∑

r=1

mr(Xr)+

linear
︷ ︸︸ ︷

L∑

l=1

βlXl, (8)

where Xj denotes the vector of the jth covariate. L, R and S are cardinal numbers of three sets corresponding to

linear effects variables, non-linear effects variables and interactive variables, respectively, which will be estimated

later. The complement of X that does not appear in Equation 7 are regarded as irrelevant variables, which should

be smoothed out.
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Here we have Q relevant variables in total and S of them have interactive effects with S 6 Q. Similarly, R of

them have uni-variate effects with R 6 Q. Finally, L out of Q covariates have linear effects, namely, R+L 6 Q,

which means we may have some covariates having only interactive effects with others. s and s′ (s < s′) is the sth

pair of relevant covariates that has interaction.

Meanwhile, mss′(Xs,Xs′) is an unknown bivariate nonparametric function of the sth pair of relevant variables;

mr(Xr) is an uni-variate unknown function of the rth relevant variable; βl is the coefficient of the lth relevant

variable.

Furthermore, we define variable sets as follows:

L = {Xl ∈ Q : Xl has linear effects on Y },

R = {Xr ∈ Q : Xr has nonlinear effects on Y }

S = {Xs,Xs′ ∈ Q : Xs,Xs′ have interactive effects on Y }.

The cardinality for each set are: |L| = L, |R| = L and |S| = S. Each set above is unknown to researchers and

can be empty.

Equation 7 avoids the curse of dimensionality with fewer restrictions. Compared with conventional additive

models where components are uni-variate, we allow potential covariates to interact with each other to provide

more information and flexibility. We also allow for a linear part since it has a better convergence rate and less

computational burden. Therefore, practitioners do not bother employing nonparametric techniques when simpler

parametric methods work. The decomposition in Equation 7 gives considerable adaptability to mitigate possible

model misspecification. We do not include higher-order interactions among covariates, but our methods can be

extended accordingly.

Based on the model above, our methodology focuses on:

1. Selecting the relevant variables subset Q from P ;

2. Specifying the form of decomposition in Equation 7;

3. Giving initial estimates of Equation 7.

3 Methodology

This section provides the detailed procedures to select relevant variables, decompose and estimate of h(X).
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3.1 Variables and Model Selection by Specification-LASSO

Without external knowledge and other information, it is hard for us to determine relevant variables and the form

of Equation 7. Therefore, all forms of entire covariates and their interactive effects should be considered, and

then, a proper variable selection model can be applied to filter all possibilities. After analyzing selection results,

one can examine whether the function form of each covariate is linear or not, and whether some of them have

interactive effects.

To develop our methods and theoretical results, we introduce some notations and definitions. First, we illustrate

spline spaces.

Similar to Schumaker (1981) and Huang et al. (2010), we suppose that the jth potential covariates Xj , where

Xj is a n× 1 vector taking values in [a, b] as:

Xj = (X1j , X2j , . . . , Xnj)
⊺, Xj ∈ P and j = 1, 2, . . . , P.

Furthermore, a, b are finite with a < b. Let K = {a = κ0 = κ0 = . . . = κ0
︸ ︷︷ ︸

g

< κ1 < κ2 < · · · < κkn <

κ = κ = . . . = κ
︸ ︷︷ ︸

g

= b} be a sequence of knots partitioning the interval [a, b] into subintervals, where kn =

[nv] with 0 < v < 0.5 being a positive integer whereas g is the order of bases used. Let Kn = kn + g, which

denotes the total number of bases. For the ith individual of Xj , where j = 1, 2, . . . , P and i = 1, 2, . . . , n , a

set of B-splines can be built in the L2 space Ωn[K] as ΦK(Xj) = {φ1(Xj), φ2(Xj), . . . , φKn
(Xj)}. Next, we

define a B-splines matrix:

ΦK(Xj) =







φ1(Xj1) φ2(Xj1) . . . φKn
(Xj1)

φ1(Xj2) φ2(Xj2) . . . φKn
(Xj2)

...
...

. . .
...

φ1(Xjn) φ2(Xjn) . . . φKn
(Xjn)







,

Definition 3.1. Define spline space Kg,K as linear combination of B-splines by:

Kg,K = span{φK,k, 1 6 k 6 Kn} = {
Kn∑

k=1

βkφK,k|βk ∈ R for 1 6 k 6 Kn},

where g is the degree of those bases and K is the knots sequence, and βk is the kth B-spline coefficient. To

simplify the notation without causing confusion, we drop the sequence subscript K henceforth.

Accordingly, the rth unknown uni-variate function can be approximated as:

mr(Xr) = Φ(Xr)βr + ξr,

where βr = (βr1, βr2, . . . , βrKn
)⊺, and ξr is the approximation error.

Similar to spline space Kg,K , we construct another spline space Dg,D using knot sequence D in interval [a′, b′].
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Definition 3.2. Define the tensor product of spline spaces Kg,K

⊗
Dg,D as the famlily of all functions of the

form:

f(xp,xp′) =
Kn∑

k=1

Dn∑

d=1

βkdφk(xp)µd(xp′), where 1 < 2 < · · · < p < p′ < · · · < P

where coefficients βkd can be any real numbers.

Accordingly, for any covariates Xa,Xb ∈ P , their potential interactive effects can be approximated as:

mab(Xa,Xb) =
Kn∑

k=1

Dn∑

d=1

βabkdφk(Xa)µd(Xb) + ξab, 1 6 a < b 6 P,

where ξab is the approximation error.

Equivalently, let

ΦK(Xia) = (φ1(Xia), φ2(Xia), . . . , φKn
(Xia))

⊺,

µD(Xib) = (µ1(Xib), µ2(Xib), . . . , µDn
(Xib))

⊺.

Equivalently:

ΦK(Xia)⊗ µD(Xib) = V ec





















φ1(Xia)µ1(Xib) φ1(Xia)µ2(Xib) . . . φ1(Xia)µDn
(Xib)

φ2(Xia)µ1(Xib) φ2(Xia)µ2(Xib) . . . φ2(Xia)µDn
(Xib)

...
...

. . .
...

φKn
(Xia)µ1(Xib) φKn

(Xia)µ2(Xib) . . . φKn
(Xia)µDn

(Xib)





















⊺

= (φ1(Xia)µ1(Xib), φ1(Xia)µ2(Xib), . . . , φ1(Xia)µDn
(Xib), . . . , φKn

(Xia)µDn
(Xib)).

Then:

ΦK(Xa)⊗ µD(Xb) =











ΦK(X1a)⊗ µD(X1b)

ΦK(X2a)⊗ µD(X2b)
...

ΦK(Xna)⊗ µD(Xnb)











.

To simplify the notation without causing any confusion, we drop the sequence subscript K and D henceforth.

We also write tensor product coefficients as vector βab as:

βab = (βab11, βab12, . . . , βab1Dn
, . . . , βabKn1, βabKn2, . . . , βabKnDn

)⊺

The true model can be approximated as:

Y = θ +
∑

Xl∈L
βlXl +

∑

Xr∈R
Φ(Xr)βr +

∑

Xs,Xs′∈S
Φ(Xs)⊗ µ(Xb)βss′ +Ξn +U ,

where Ξn is the approximation error and U is the n× 1 vector of idiosyncratic error ǫi .



3 METHODOLOGY 10

Those non-zero coefficients are:

βL = (β1, . . . , βL)
⊺,

βR = (β⊺
1 , . . . ,β

⊺
R)

⊺,

βS = (β⊺
11′ , . . . ,β

⊺
SS′)

⊺.

We define a non-zero coefficient vector:

βP1
= (β⊺

L,β
⊺
R,β

⊺
S)

⊺.

Let dim(βP1
) = P1, where dim(·) means the dimension of any vector. We also define B-spline bases of relevant

covariates as:

XL = (X1, . . . ,Xl, . . . ,XL), Xl ∈ L.

N (XR) = (Φ(X1), . . . ,Φ(Xr), . . . ,Φ(XR)), Xr ∈ R.

I(XS) = (Φ(X1)⊗ µ(X1′), . . . ,Φ(XS)⊗ µ(XS′)), Xs and Xs′ ∈ S.

Recall that for individual i, we observe P potential covariates denoted as a vector Pi, and there are Q relevant

variables denoted as Qi, Q 6 P . There are two steps for the S-LASSO to work to select Qi out of Pi and to

specify the model as in Equation 7.

In the next step, our job is to put all possible linear, nonlinear and interactive forms of all potential covariates

in a selection model. S-LASSO can achieve at least three goals, namely, to select all the relevant variables, to

specify the model and to obtain the preliminary estimates.

Step 1. Substitute all possible forms of each variable and pairwise interactive terms in P into LASSO selection:

min
βl,βr ,βab

||Y − θ −
P∑

l=1

βlXl −
P∑

r=1

Φ(Xr)βr −
P−1∑

a=1

P∑

b>a

Φ(Xa)⊗ µ(Xb)βab||22

+λn

(
P∑

l=1

|βl|+
P∑

r=1

|βr|+
P−1∑

a=1

P∑

b>a

|βab|
)

where |β| and |βn| are l1 norms and ||β||2 ≡ (
∑N

n=1 |βn|2)1/2 denotes the l2 norm of any n× 1 vector β. λn > 0

is a data driven tuning parameter. This step provides us with preliminary information after the initial selec-

tion. However, one drawback of LASSO process is that it may leave plenty of small but non-zero coefficients.

Nonetheless, the first step provide crucial hints which are helpful for discriminatory penalty in the next step.

Step 2. Use step 1 estimates to construct penalty weighting coefficients and substitute all bases into adaptive

group LASSO:

ω̂l =







√
NL|β̃l|−1, if |β̃l| > 0

∞, if β̃l = 0.
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ω̂r =







√
NR||β̃r||−1

2 , if ||β̃r||2 > 0

∞, if ||β̃r||2 = 0.

ω̂ab =







√
NS ||β̃ab||−1

2 , if ||β̃ab||2 > 0

∞, if ||β̃ab||2 = 0.

NL = L, NR = R×Kn and NS = S(S−1)
2

× (Kn)
2 are the number of coefficients within each group as our group

sizes are significantly different. We use group cardinality to control the strength of the penalty.

To eliminate the noise from step 1, we consider the adaptive group LASSO which can select variables in a

group manner.

L(θ, βl,βr,βab) = ||Y − θ −
P∑

l=1

βlXl −
P∑

r=1

Φ(Xr)βr −
P−1∑

a=1

P∑

b>a

Φ(Xa)⊗ µ(Xb)βab||2

+λ̃n

(
P∑

l=1

ω̂l|βl|+
P∑

r=1

ω̂r||βr||2 +
P−1∑

a=1

P∑

b>a

ω̂ab||βab||2
)

,

Let 0 × ∞ = 0, so groups deleted by LASSO are not selected by adaptive group LASSO for sure. λ̃n > 0 is a

data driven tuning parameter.

After the selection by step 2, all non-zero coefficients of linear approximation are represented as β̂L; non-zero

coefficients of the approximate of nonlinear effects are shown as β̂R; non-zero coefficients of tensor products are

written as β̂S . At the same time, all the irrelevant variables or bases are smoothed out since their coefficients are

zeros. Additionally, the non-zero βs of Step 2 is a vector β̂P1
,

β̂P1
= (β̂⊺

L, β̂
⊺
R, β̂

⊺
S)

⊺,

where β̂L = (β̂1, . . . , β̂L̂)
⊺, β̂R = (β̂⊺

1 , . . . , β̂
⊺

R̂
)⊺, and β̂P = (β̂⊺

11′ , . . . , β̂
⊺

ŜŜ′
)⊺.

The model specification we obtained is:

h(Q) =
∑

Xl∈L̂

βlXl +
∑

Xr∈R̂

mr(Xr) +
∑

Xs,Xs′∈Ŝ

mss′(Xs,Xs′),

where,

L̂ = {Xl ∈ Q : |β̂l| > 0},

R̂ = {Xr ∈ Q : ||β̂r||2 > 0},

Ŝ = {Xs,Xs′ ∈ Q : ||β̂ss′ ||2 > 0},

Accordingly, |L̂| = L̂, |R̂| = R̂ and |Ŝ| = Ŝ. In practice, we include covariates that are selected by both linear

and nonlinear parts in the nonlinear set only since this can simplify the model further. The classification above is

for theoretical proof purposes.
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Next, nonlinear and interactive components are approximated by:

m̂r(Xr) = Φ(Xr)β̂r, 1 6 r 6 R̂

m̂ss′(Xs,Xs′) = Φ(Xs)⊗ µ(Xs′)β̂ss′ , 1 6 s < s′ 6 Ŝ.

Meanwhile, we define the matrix of irrelevant components, which are smoothed out by S-LASSO as:

XLC = (X1, . . . ,Xl, . . . ,XLC ), Xl ∈ P but Xl 6∈ L.

N (XRC ) = (Φ(X1), . . . ,Φ(Xr), . . . ,Φ(XRC )), Xr ∈ P but Xr 6∈ R.

I(XSC) = (Φ(X1)⊗ µ(X1′), . . . ,Φ(XSC )⊗ µ(XSC′ )), Xs and Xs′ ∈ P but Xs and Xs′ 6∈ S.

Let n× P1 matrix Z1 = (XL,N (XR), I(XS)) represent all the relevant components and let βP1
be the P1 × 1

coefficient vector of matrix Z1. Meanwhile, let n × P2 matrix Z2 = (XLC ,N (XRC ), I(XSC )), denotes all the

irrelevant components. Similarly, let βP2
= (β⊺

LC ,β
⊺

RC ,β
⊺

SC )
⊺ be the P2 × 1 coefficient vector of matrix Z2.

3.2 Estimation

OLS can be applied to obtain estimates:

β̂P1
= (Z⊺

1
Z1)

−1Z
⊺
1
Y .

And

β̂P2
= 0,

β̂PZ
= (β̂⊺

P1
, β̂⊺

P2
)⊺.

4 Theoretical results

Firstly, we list some assumptions to facilitate our theoretical analysis.

4.1 Assumption

Assumption 1. The noise ǫi are independent and identically distributed with Eǫi = 0 and V ar(ǫ) = σ2. Fur-

thermore, it has finite 2kth moment with E(ǫ2ki ) < ∞ for k = 1, 2, . . . , K.

Assumption 2. Let

V =
1

n
(Z1,Z2)

⊺(Z1,Z2) =







VZ1Z1
VZ1Z2

VZ2Z1
VZ2Z2






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be the covariance matrix of all the components in step 1. There exist constants c1, c2, c3, and c4 with 0 6 c1 <

c2 6 1 and c3, c4 > 0, such that

P1 = O(nc1), (9)

n
1−c2

2 min{|βl|, ||βr||2, ||βss′ ||2} > c4, for βl,βr,βss′ ∈ βP1
. (10)

P2 = O(n(c2−c1)k), (11)

λmin(VZ1Z1
) > c3, (12)

Equation 9 and Equation 11 control the maximum dimensions of relevant and irrelevant components respec-

tively. Equation 12 ensures that the minimum eigenvalue of relevant components matrix Z1 is away from 0 to be

invertible, where λmin(VZ1Z1
) indicates the smallest eigenvalue of covariance matrix VZ1Z1

. Finally, Equation 10

limits the decay rate of elements in βP1
.

Assumption 3. E(mr(Xr)) = 0, E(mss′(Xs,Xs′)) = 0, given Xj ∈ R ∪ S .

This assumption is for unique identification purpose.

Assumption 4. 0–th, first and second derivatives of mr(Xr) and mss′(Xs,Xs′) are continuous, for Xr ∈ R and

Xs, Xs′ ∈ S .

This assumption is for approximation accuracy of B-splines bases and their tensor products.

Definition 4.1. Let β̂ be an estimate of β. Then, β̂ is Sign Consistent with β, shown as β̂ =s β, if and only if

sign(β̂) = sign(β),

where sign(β̂) = 1, if β̂ > 0; sign(β̂) = −1, if β̂ < 0; and sign(β̂) = 0, if β̂ = 0. Similarly, Let β̂ be a

vector of estimates of β. Then β̂ is Sign Consistent with β, written as β̂ =s β if and only if each entry is Sign

Consistent.

Definition 4.2. Let β̂ be an estimate of β. Then, β̂ is Norm Consistent with β, shown as β̂ =0 β, if and only if

sign0(β̂) = sign0(β),

where sign0(β̂) = 1, if β̂ 6= 0; sign0(β̂) = 0, if β̂ = 0. Similarly, Let β̂ be a vector of estimates of β. Then β̂ is

Norm Consistent with β, written as β̂ =0 β if and only if each entry is Norm Consistent.
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Condition 4.1. Let covariance matrix V satisfies strong irrepresentable condition documented by Zhao and Yu

(2006), stating that there exists a positive constant P1 × 1 vector η, and

|VZ2Z1
(VZ1Z1

)−1sign(βP1
)| 6 1− η,

which is true element-wise.

Condition 4.2. Similarly, covariance matrix V satisfies weak irrepresentable condition , if

|VZ2Z1
(VZ1Z1

)−1sign(βP1
)| < 1,

which is true element-wise.

Theorem 4.1. Under Assumptions 1-4 and Condition 4.2, and let PZ = P1 + P2, βPZ
= (β⊺

P1
,β⊺

P2
)⊺, for ∀λn

satisfying λn√
n
= o(n

c2−c1
2 ) and 1

PZ
( λn√

n
)2k → ∞ for k = 1, 2, 3 . . . , then the first step of S-LASSO is sign consistent

with:

P (β̂PZ
=s βPZ

) > 1−O(
PZn

k

λ2k
n

) → 1, as n → ∞.

Theorem 4.2. Given the well-chosen number of internal knots kn = [nv] and under Assumptions 1-4 and Theorem

4.1, S-LASSO is consistent on selection relevant covariates and specification of the correct model:

P ( lim
n→∞

β̂L =0 βL) → 0,

P ( lim
n→∞

β̂R =0 βR) → 0,

P ( lim
n→∞

β̂S =0 βS) → 0.

5 Simulation study

We generate our model as:

yi = βx1i +m1(x2i) +m2(x3i, x4i) + ǫi, i = 1, . . . , n,

where βx1i = x1i, m1(x2i) = x2
2i, m2(x3i, x4i) = sin(x3i + x4i). All three above functions are rescaled to

be zero mean and unit variance. Furthermore, we generate P candidate variables xpi. We have all independent

variables generated from Uniform[−2, 2] and ǫ ∼ N(0, σ2), where there are no correlations between all potential

variables. Two different P dimensions and three different sample sizes are tested, namely, P = 30, 50 with n =

100, 300, 500.

In Table 1, we compare the results of S-LASSO and the methods of selecting interactive effects between stock

characteristics in Freyberger et al. (2020) (named FNW).
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We choose four evenly distributed knots to construct B-splines approximation of nonlinear effects while choos-

ing two evenly distributed knots for each covariate to construct tensor products to keep the group size comparable.

Meanwhile, for the FNW methods, we choose all the knots sequences for xj and xj × xj′ to be 4, which are also

evenly distributed, to approximate both nonlinear and interaction effects among potential covariates. The tuning

parameter λns are chosen through BIC for both steps. Here, we define BIC as:

BIC = n ∗ log(MSE) + df ∗ log(n),

where n is the number of observation and df represents the degree of freedom in LASSO procedures discussed in

Leng et al. (2006).

Furthermore, we define the signal to noise ratio as as Rσ = sd(m(·))/sd(ǫ) to illustrate the robustness of

S-LASSO under different noise level.
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Table 1: Simulation Example of S-LASSO

σ=0.25 σ=0.333 σ=0.5

INC CS MSE INC CS MSE INC CS MSE

P=30

n=100

S-LASSO
52.8 49.4 0.77 48.2 44.2 0.83 32.8 28.4 0.94

(0.5) (0.5) (0.28) (0.5) (0.5) ( 0.29) (0.47) (0.45) (0.32)

FNW
0 0 1.13 0 0 1.2 0.2 0.2 1.42

(0) (0) (0.4) (0) (0) (0.41) (0.04) (0.04) (0.49)

n=300

S-LASSO
95.6 95 0.59 94.8 94 0.66 95 95 0.81

(0.21) (0.22) (0.17) (0.22) (0.24) (0.2) (0.218) (0.218) (0.2)

FNW
0 0 0.97 0 0 1.02 0 0 1.16

(0) (0) (0.18) (0) (0) (0.17) (0) (0) (0.18)

n=500

S-LASSO
99.8 99.6 0.53 98.2 97.2 0.59 98.4 98.4 0.75

(0.04) (0.06) (0.08) (0.133) (0.165) (0.11) (0.126) (0.126) (0.138)

FNW
0 0 0.97 0 0 0.96 0 0 1.15

(0) (0) (0.14) (0) (0) (0.14) (0) (0) (0.15)

P=50

n=100

S-LASSO
34.8 31.6 0.88 34.8 32 0.89 24.8 22 1.01

(0.48) (0.47) (0.31) (0.48) (0.47) (0.32) (0.43) (0.41) 0.35

FNW
0 0 1.24 0 0 1.31 0 0 1.5

(0) (0) (0.48) (0) (0) (0.45) (0) (0) (0.41)

n=300

S-LASSO
92.8 92.4 0.66 88 88 0.75 85.8 85.8 0.92

(0.26) (0.27) (0.22) (0.33) (0.33) (0.26) (0.35) (0.35) (0.27)

FNW
0 0 1.01 0 0 1.06 0 0 1.22

(0) (0) (0.2) (0) (0) (0.19) (0) (0) (0.19)

n=500

S-LASSO
98.6 98.4 0.57 96.8 96.8 0.64 96 96 0.81

(0.12) (0.13) (0.12) (0.18) (0.18) (0.17) (0.2) (0.2) (0.19)

FNW
0 0 0.98 0 0 1.02 0 0 1.18

(0) (0) (0.14) (0) (0) (0.16) (0) (0) (0.16)

Note: This table compares the performance of S-LASSO and the method used in FNW (2020) under different sample

size, n=100, 300, 500; different number of irrelevant variables, P=30, 50; and different levels of noise, Rσ = 4, 3, 2. INC

represents the percentage that all the relevant covariates are correctly included in the model. CS shows the percentage of the

whole model that is correctly specified, which means the model not only selects all relevant variables but also gives them a

precise specification. MSE indicates the average mean squared error of all repetitions under each method. Simulations are

repeated 500 times for each setting. Standard deviations are given in the parentheses.
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From the results in Table 1, S-LASSO overperforms FNW under all scenarios. Because in FNW, they treat

interaction term xj × xj′ as a new variable and construct B-spline space based on this covariate. Therefore, only

certain forms of pairwise interactions with input xj × xj′ can be detected. Hence, for nearly all the simulation

settings, FNW can neither include all the relevant covariates nor specify the model correctly, given the interactive

function form sin(x3i + x4i). However, S-LASSO employs tensor products of B-splines to approximate potential

interactions and has decent accuracy on both including all relevant covariates and choosing the correct model. We

use this simulation to show the limitation of FNW and demonstrate that tensor products can accommodate more

comprehensive forms of interactions. Additionally, although prediction is not the primary goal of S-LASSO, it

has much smaller MSE compared with FNW.

Furthermore, S-LASSO works better for small P large n circumstances, and the highest percentage of selecting

the relevant covariates and specifying the correct model can be 99.8% and 99.6% individually. For the most

challenging condition under P=50, n=100 and σ = 0.5, S-LASSO also has acceptable performance with an

accuracy of 24.8% and 22% respectively.

S-LASSO is also robust under different levels of noise for all settings. As shown from different rows of Table 1,

the accuracy is similar across three different noise levels.

6 Empirical Study

6.1 Introduction

In this section, we revisit the question proposed by Freyberger et al. (2020), where they try to detect the influ-

ence of firms’ characteristics on stock returns non-parametrically. They specify assets returns as additive non-

parametric functions of lagged corresponding assets characteristics such as book-to-market ratio, profitability,

etc. Their model is:

E(Yt+1|Wt) = θt +
R∑

r=1

mr(Xrt), (13)

where Yt+1 is a n × 1 vector of stock excess returns at time t; Wt is a n × W matrix of W asset-relevant

characteristics that are observed at time t. At the right hand side of Equation 13, they select R additive non-

parametric uni-variate unknown functions of characteristics that are relevant to predict stock excess returns, and

θt is the intercept.

To further investigate the interactive effects between assets sizes with other characteristics, they propose a

model to accommodate pairwise interactions:

E(Yt+1|Wt) = θt +
R∑

r=1

mr(Xrt) +
S∑

s

ms(Xst ·Xsize,t), (14)



6 EMPIRICAL STUDY 18

where they consider the unknown function form taking input as Xs · Xsize. As discussed in Introduction and

exemplified in Simulation, ms(Xs · Xsize) 6= ms(Xs,Xsize), this specification of interactions may restrict the

form of interactive effects to be multiplicity only. Furthermore, they do not include linear parts, which have both

computational simplicity and quicker rate of convergence.

In this section, we apply S-LASSO to short rolling window data to revisit the effects of assets characteristics

on stock returns and their interactive effects with firms sizes. We further divide uni-variate effects to be linear or

nonlinear. The model is specified as:

E(Yt+1|Wt) = θt +
L∑

l=1

βlXl +
R∑

r=1

mr(Xrt) +
S∑

s=1

ms(Xst,Xsize,t), (15)

where the notations are similar to Equation 14. However, we add a linear term to capture the linear effects

of some characteristics, which can increase the rate of convergence and simplify the model and interpretation.

Meanwhile, we relax the pairwise interaction between characteristics to a more general form. Similarly, we also

assume that both slope parameters and characteristic functions are time-invariant. Therefore, for those nonlinear

and interactive characteristics, each characteristic and each pair among them share a certain form of variation.

6.2 Data Description

Monthly stock returns are collected from CRSP (Center for Research in Security Prices) and security-specific

characteristics date is from Compustat. In terms of stock returns, we correct all returns of delisted stock as in

Hou et al. (2015). Furthermore, we subtract Fama-French’s monthly risk-free returns from monthly stock returns

to attain Y from July 1967 to June 2017, 600 months in total. As for security-related characteristics matrix W ,

is constructed using the same way of Freyberger et al. (2020). After trading off the number of assets kept and

characteristics’ availability, we select 33 characteristics, which are documented in the Appendix. We use balance

sheet data ending at fiscal year t−1 to predict stock excess returns from July t−1 to June t. Some characteristics

are updated annually, so we take them unchanged during the fiscal year t. Finally, we merge stock returns and

security-specific characteristics.

6.3 Variable Selection and Model Specification

We apply non-overlapping rolling window analysis in this empirical study. The purpose is to understand whether

there are any time variations in Equation 15. In each rolling block, we use pooled panel data to apply S-LASSO.

We omit the heterogeneity to assume that the same characteristic has an identical functional form within each

rolling window.

For each characteristic, we choose the number of knots to be 6 to construct B-spline bases, which are used to

approximate nonlinear effects and choose the number of knots to be 3 for tensor product bases, which are con-
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structed to approximate interactive effects. Next, we substitute all the levels, B-spline bases and tensor products

into the S-LASSO algorithm.

There are two steps for S-LASSO to work, and for both steps, similar to simulation studies, we choose λn and

λ̃n through BIC.

We summarize selection results in Table 2, Table 3 and Table 4, respectively. Columns of these tables are rolling

window time periods while each row presents selection results of each characteristic separately. We use X to show

that the corresponding characteristic is selected in a certain rolling block. We omit some rolling blocks due to

the non-invertible characteristics matrix. Table 2 documents selection results of characteristics’ linear effects on

assets excess returns. We do not include characteristics that have both linear and nonlinear effects in Table 2 as the

general effects of these characteristics should be concluded as nonlinear. Compared with Table 3, characteristics

that only have linear effects on assets returns are uncommon. However, some characteristics experience persistent

linear effects on stock returns, such as "C2A" (ratio of cash and short-term investments to total assets), "PCM"

(price-to-cost margin ), "r12_7" (cumulative past return from 12 to 7 months). Table 2 demonstrates that most

uni-variate effects from characteristics are nonlinear, and some of them are long-lasting. "LME" (total market

capitalization of the previous month), "A2ME" (assets to market capitalization), "AT" (total assets), "E2P" (earn-

ings to price) and "ROA" (return-on-assets) are selected by all rolling windows. Meanwhile, "Investment", "Q"

(Tobin’s Q), "ROE" (return-on-equity), "r2_1" (short-term reversal 2 to 1 month) and "S2P" (sales-to-price) are

frequently chosen. As for interactive effects with firms’ sizes, we use "LME" (total market capitalization of the

previous month) as the measure of firms’ sizes. Table 4 shows the characteristics that have interactive effects with

"LME". The interactive effects are not limited to be multiplicity by our method. "Free_cash" is more influential

on stock returns when interacting with firms’ sizes. "A2ME", "AT", "Q" and "ROA" also substantially interact

with "LME".

Empirical results demonstrate the power of S-LASSO to select relevant variables and specify a flexible regres-

sion model. We show that asset-related characteristics are relevant to predict stock excess returns. Specifically,

the form of each characteristic is different, which includes but is not limited to linear effects, nonlinear effects

and interactions with firms’ sizes. Although most uni-variate functions of characteristics are nonlinear, however,

linear functions, which have both computational and convergence advantages, are still important. S-LASSO can

not only specify linear parts but also select more general interactive effects with firms’ sizes since it uses tensor

products to approximate more complicated bi-variate functions.
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6.4 Selection Results

Table 2: Summary of Linear Effects of Characteristics on Assets Excess Returns

Characteristics 65-68 68-71 71-73 73-76 76-79 79-82 85-88 88-91 91-94 94-97 97-00 03-06 06-09 09-12

LME

A2ME

AT

ATO

BEME

C2A X X X X X X

C2D

CTO X X X X

Delceq

DelGmSale

Delshrout X

E2P

EPS X X

Free_cash X X X X

Investment

IPM X

Lev X X X

LTurnover

PCM X X X X X

PM X X X

Prof

Q

ROA

ROC

ROE

r12_2

r12_7 X X X X X X X

r6_2 X X X X

r2_1 X X X X

S2C

S2P X

Sales_g X

SGA2S X

This table shows selection results of characteristics that only have linear effects on predicting assets excess returns through three-year

rolling windows from July 1965-June 2012. X represents the characteristic is selected in the corresponding rolling window shown in the

column.
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Table 3: Summary of nonlinear Effects of Characteristics on Assets Excess Returns

Characteristics 65-68 68-71 71-73 73-76 76-79 79-82 85-88 88-91 91-94 94-97 97-00 03-06 06-09 09-12

LME X X X X X X X X X X X X X X

A2ME X X X X X X X X X X X X X X

AT X X X X X X X X X X X X X X

ATO X X X X X X X X X X

BEME X X X X X X X X X X X

C2A X

C2D X X X X X

CTO X X X X X X X X

Delceq X X X X X X X X X

DelGmSale X X X X X X X X

Delshrout X X X X X X X X X

E2P X X X X X X X X X X X X X X

EPS X X X X X X X X X X X X

Free_cash X

Investment X X X X X X X X X

IPM X X X X X X X X X X X

Lev X X X X X X X X X

LTurnover X X X X X

PCM X X X X

PM X X X X X X X X

Prof X X X X X X X X

Q X X X X X X X X X X X X X

ROA X X X X X X X X X X X X X X

ROC X X X X X X X X

ROE X X X X X X X X X

r12_2 X X X X X X X

r12_7 X X

r6_2 X X X X X X X X

r2_1 X X X X X X X X

S2C X X X X

S2P X X X X X X X X X X

Sales_g X X X X X

SGA2S X X X X

This table shows selection results of characteristics that have nonlinear effects on predicting assets excess returns through three-year

rolling windows from July 1965-June 2012. X represents the characteristic is selected in the corresponding rolling window shown in the

column.
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Table 4: Summary of Interactive Effects of Characteristics with Size on Assets Excess Returns

Characteristics 65-68 68-71 71-73 73-76 76-79 79-82 85-88 88-91 91-94 94-97 97-00 03-06 06-09 09-12

A2ME X X X X X X X X X X X X X X

AT X X X X X X X X X X X X X X

ATO X

BEME X X X X X

C2A X X X X X X X X

C2D

CTO X X X X X X

Delceq

DelGmSale X

Delshrout X X

E2P X X X X X X

EPS X X X X X X

Free_cash X X X X X X

Investment X X X

IPM

Lev X X X X X X

LTurnover X X X

PCM X X X X X X

PM X

Prof X

Q X X X X X X X X X

ROA X X X X X X X X X

ROC X X X

ROE

r12_2 X

r12_7

r6_2 X

r2_1 X X

S2C X

S2P X X X X X X

Sales_g

SGA2S X X X X

This table shows selection results of characteristics that have interactive effects with firms’ sizes (LME) on predicting assets excess

returns through three-year rolling windows from July 1965-June 2012. X represents the characteristic is selected in the corresponding

rolling window shown in the column.
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7 Conclusion

We propose a more general variable selection and model specification method, called Specification LASSO (S-

LASSO). S-LASSO is designed under sparsity, to specify a partially linear additive non-parametric regression

model with pairwise interactions among regressors. Firstly, S-LASSO considers all possibilities through levels,

B-splines bases and tensor products of all variables. Then, there are two steps for S-LASSO to work. In the first

step, we apply LASSO to give preliminary selection. In the second step, an adaptive group LASSO is employed to

give the final selection results in a group manner, using estimates in the first step as discriminatory group penalty.

We illustrate the satisfactory accuracy of S-LASSO through simulation studies. Empirically, S-LASSO is applied

to a characteristics-based asset pricing model. We show that security-specific characteristics have linear, nonlinear

and interactive effects with firms’ sizes on assets excess returns, which complements current literature.
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Appendices

A Proofs

Let βPZ
= (β⊺

P1
,β⊺

P2
), Z = (Z1, Z2), βi is the ith element of β. βj is the jth group of βPZ

, and Xj is the

covariates matrix of Z in the second group.

In the first step, after applying KKT conditions, we obtain Lemma A.1 below.

Lemma A.1.

d||Y − θ −Zβ||2
dβi

= λnsign(β̂i) for β̂i 6= 0,

d||Y − θ −Zβ||2
dβi

6 λnsign(β̂i) for β̂i = 0.

Lemma A.2. Under Strong Irrepresentable Condition holds and a constant η > 0, then:

P (β̂PZ
=s βPZ

) > P (EA ∩ EB),

where:

EA = { 1√
n
|(VZ1Z1

)−1Z
⊺
1
U | <

√
n(|βP1

| − λn

2n
|(VZ1Z1

)−1sign(βP1
)|)}

EB = { 1√
n
|VZ2Z1

(VZ1Z1
)−1Z

⊺
1
U −Z

⊺
2
U | 6 λn

2
√
n
η},

The above equations hold for each entry.

The Lemma A.2 is borrowed from Proposition 1. of Zhao and Yu (2006). Proofs can be found in their

Appendix.

Proof of Theorem 4.1 : We give some notations before the proof. Let τ = 1√
n
(VZ1Z1

)−1Z
⊺
1
U , and υ =

1√
n
(VZ2Z1

(VZ1Z1
)−1Z

⊺
1
U −Z

⊺
2
U ).

By Lemma A.2 we have:

1−P (EA∩EB) 6 P (Ec
A)+P (Ec

B) 6

P1∑

i=1

P (|τi| >
√
n(|βP1i|−

λn

2n
(VZ1Z1

)−1sign(βP1i))+

P2∑

i=1

P (|υi| >
λn

2
√
n
ηi).

Then we have

Fτ =
1√
n
(VZ1Z1

)−1Z
⊺
1
,
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therefore,

FτF
⊺
τ = (VZ1Z1

)−1.

Given λmin(VZ1Z1
) > c3, then we have V −1

Z1Z1
< c5 for each entry. Similarly, let

Fυ =
1√
n
(VZ2Z1

(VZ1Z1
)−1Z

⊺
1 −Z

⊺
2 ),

and

FυF
⊺
υ =

1

n
Z

⊺
2
(I −Z

⊺
1
VZ1Z1

)−1Z
⊺
1
)Z2.

Since I − Z
⊺
1
(VZ1Z1

)−1Z
⊺
1

is idempotent, which only has the eigenvalues of 1 and 0, therefore FυF
⊺
υ 6 c4 for

each diagonal element.

Furthermore, we have:

λn

n
|(VZ1Z1

)−1sign(βP1
)| 6 c5λn

n
‖βP1

‖2

Given E(ǫ2ki ) < ∞, then we have E(τ 2ki ) < ∞ and E(υ2k
i ) < ∞. Therefore, the tail probability of τi is

bounded by:

P (τi > T ) = O(T−2k),

furthermore, under λn√
n
= o(n

c2−c1
2 ),

P1∑

i=1

P (|τi| >
√
n(|βP1i| −

λn

2n
(VZ1Z1

)−1sign(βP1i)) = P1O(n−kc2) = o(
PZn

k

λ2k
n

). (16)

Similarly,
P2∑

i=1

P (|υi| >
λn

2
√
n
ηi) = P2O(

nk

λ2k
n

) = o(PZ
nk

λ2k
n

). (17)

Then, combining Equation 16 and Equation 17 gives Theorem 4.1. �

After grouping all the coefficients from step 1, we use βj to represent the jth group of βPZ
.

we apply the KKT condtions again to obtain the Lemma A.3

Lemma A.3.

d||Y − θ −Zβ||2
dβj

= ω̂jλ̃n
β̂j

‖β̂j‖2
for ‖β̂j‖2 6= 0,

d||Y − θ −Zβ||2
dβj

6 ω̂jλ̃n for ‖β̂j‖2 = 0,

Similar to Lemma 5 and Lemma 6 of Huang et al. (2010), we give the following Lemmas:
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Lemma A.4. Under Assumptions 1-4 and Condition 4.1-4.2:

P (‖β̂j − βj‖2 > ‖βj‖2, ∃Xj ∈ L ∪R ∪ S) → 0.

Lemma A.5. Under Assumptions 1-4 and Condition 4.1-4.2:

P (‖X⊺
j (Y −Z1β1)‖2 > λ̃nω̂j/2, ∃Xj /∈ L ∪R ∪ S) → 0

Proofs of Lemma A.4 and Lemma A.5 can be found in the Appendix of Huang et al. (2010).

Proof of Theorem 4.2 : Theorem 4.2 satisfies the Condition 1 of Huang et al. (2010). Under Theorem ??, and

Lemma A.3, we set ζ = (
ω̂j β̂j

2‖β̂j‖
), for Xj ∈ L ∪R ∪ S.

Therefore, we have:

β̂P1
= (Z⊺

1
Z1)

−1Z
⊺
1
(Y − λ̃nζ).

To proof Theorem 4.2, equivalently, we need to proof:

β̂P1
=0 βP1

‖Z⊺
j (Y −Z1βP1

)‖2 6 λ̃nω̂j/2 ∀j /∈ L ∪R ∪ S
.

This is equivalently to show:

‖βj‖2 − ‖β̂j‖2 < ‖βj‖2 ∀j ∈ L ∪R ∪ S
‖Z⊺

j (Y −Z1βP1
)‖2 6 λ̃nω̂j/2 ∀j /∈ L ∪R ∪ S

.

Therefore,

P (β̂PZ
6=0 βPZ

) 6 P (βj‖2 − ‖β̂j‖2 > ‖βj‖2 ∃j ∈ L ∪R ∪ S)
+P (‖Z⊺

j (Y −Z1βP1
)‖2 > λ̃nω̂j/2 ∃j /∈ L ∪R ∪ S)

.

Theorem 4.1 shows

ω̂j → ∞, ∀j /∈ L ∪R ∪ S,

where ωj is the specific penalty parameter of the jth coefficient group.

Then,

P (‖Z⊺
j (Y −Z1βP1

)‖2 > λ̃nω̂j/2, ∃j /∈ L ∪R ∪ S) → 0

Therefore, under Lemma A.4 and Lemma A.5, the Theorem 4.2 follows. �

A.1 Characteristics
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Table 5: Characteristic Details

Name Description Reference

A2ME We define assets-market cap as total assets (AT)

over market capitalization as of December t-1.

Market capitalization is the product of shares out-

standing (SHROUT) and price(PRC).

Bhandari (1988)

AT Total assets (AT) Gandhi and Lusting (2015)

ATO Net sales over lagged net operating assets. Net op-

erating assets are the difference between operating

assets and operating liabilities. Operating assets

are total assets (AT) minus cash and short-term in-

vestments (CHE), minus investment and other ad-

vances (IVAO). Operating liabilities are total assets

(AT), minus debt in current liabilities(DLC),minus

long-term debt (DLTT),minus minority interest

(MIB), minus preferred stock (PSTK), minus com-

mon equity (CEQ).

Soliman(2008)

BEME Ratio of book value of equity to market value

of equity. Book equity is shareholder equity

(SH) plus deferred taxes and investment tax credit

(TXDITC), minus preferred stock (PS). SH is

shareholder‘s equity (SEQ). If missing, SH is the

sum of common equity (CEQ) and preferred stock

(PS). If missing, SH is the difference between to-

tal assets (AT) and total liabilities (LT). Depend-

ing on availability, we use the redemption (item

PSTKRV), liquidating (item PSTKL), or par value

(item PSTK) for PS. The market value of equity is

as of December t-1. The market value of equity is

the product of shares outstanding (SHROUT) and

price (PRC).

Rosenberg, Reid and Lanstein

(1985) Davis, Fama, and French

(2000)

C Ration of cash and short-term investments (CHE)

to total assets (AT)

Palazzo
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C2D Cash flow to price is the ratio of income and ex-

traoridinary items (IB) and depreciation and amor-

tization (dp) to total liabilities (LT).

CTO We define caoital turnover as ratio of net sales

(SALE) to lagged total assets (AT).

Haugen and Baker (1996)

Debt2P Debt to price is the radio of long-term debt (DLTT)

and debt in current liabilities (DLC) to the mar-

ket capitalization as of December t-1 . Market

capitalization is the product of shares outstanding

(SHROUT) and price (PRC).

Litzenberger and Ramaswamy

(1979)

∆ceq The percentage change in the book value of equity

(CEQ).

Richardson et al. (2005)

∆(∆Gm− Sales) The difference in the percentage change in gross

margin and the percentage change in sales (SALE).

We define gross margin as the difference in sales

(SALE) and costs of goods sold (COGS).

Abarbanell and Bushee (1997)

∆Shrout The definition of the percentage change in shares

outstanding (SHROUT).

Pontiff and Woodgate (2008)

∆PI2A We define the change in property, plants ,and

equipment as changes in property,plants,and

equipment (PPEGT) and inventory (INVT) over

lagged total assets (TA).

Lyandres , Sun, and Zhang

(2008)

DTO We define turnover as ratio of daily volume (VOL)

to shares outstanding (SHROUT) minus the daily

market turnover and de-trend it by its 180 trading

day median. We scale down the volume of NAS-

DAQ securities by 38% after 1997 and by 50% be-

fore that to address the issue of double-counting of

volume for NASDAQ securities.

Garfinkel (2009); Anderson and

Dyl (2005)

E2P We define earnings to price as the ratio of income

before extraordinary items (IB) to the market capi-

talization as December t-1 Market capitalization is

the product of share outstanding (SHROUT) and

price (PRC).

Basu (1983)
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EPS We define earnings per share as the ratio of income

before extraordinary items (IB) to share outstand-

ing (SHROUT) as of December t-1

Basu (1997)

Investment We define investment as the percentage year-on-

year growth rate in total assets (AT).

Cooper, Gulen and Schill(2008)

IPM We define pre-tax profit margin as ratio of pre-tax

income (PI) to sales (SALE).

Lev leverage is the ratio of long-term debt (DLTT) and

debt in the current liabilities (DLC) to the sum

of long-term debt, debt in current liabilities, and

stockholders’ equity (SEQ)

Lewenllen (2015)

LME Size is the total market capitalization of the pre-

vious month defined as price (PRC) times shares

outstanding (SHROUT)

Fama and French (1992)

Turnover Turnover is last month’s volume (VOL) over

shares outstanding (SHROUT).

Datar, Naik and Radcliffe (1998)

OL Operating leverage is the sum of cost of goods sold

(COGS) and selling, general, and administrative

expenses (XSGA) over total assets.

Novy-Marx (2011)

PCM The price-to-cost margin is the difference between

net sales (SALE) and costs of goods sold (COGS)

divided by net sales (SALE).

Gorodnichenko and Weber

(2016) and D’Acunto, Liu,

Pflucger and Wcber (2017)

PM The profit margin is operating income after depre-

ciation (OIADP) over sales (SALE)

Soliman (2008)

Q Tobin’s Q is total assets (AT), the market value

of equity (SHROUT times PRC) minus cash

and short-term investments (CEQ) minus deferred

taxes (TXDB) scaled by total assets (AT).

ROA Return-on-assets is income before extraordinary

items (IB) to lagged total assets (AT).

Balakrishnan, Bartov and Faurel

(2010)

ROC ROC is the ratio of market value of equity (ME)

plus long-term debt (DLTT)minus total assets to

Cash and Short-Term Investments (CHE).

Chandrashekar and Rao (2009)
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ROE Return-on-equity is income before extraordinary

items (IB) to lagged book-value of equity.

in Haugen and Baker (1996)

r12−2 We define momentum as cumulative return from

12 months before the return prediction to two

months before.

Fama and French (1996)

r12−7 We define intermediate momentum as cumulative

return from 12 months before the return prediction

to seven months before.

Novy-Marx (2012)

r6−2 We definer6−2 as cumulative return from 6 months

before the return prediction to two months before.

Jegadeesh and Titman (1993)

r2−1 We define short-term reversal as lagged one-month

return.

Jegadeesh(1990)

S2C Sales-to-cash is the ratio of net sales (SALE) to

Cash and Short-Term Investments (CHE).

following Ou and Penman

(1989)

Sales-G Sales growth is the percentage growth rate in an-

nual sales (SALE).

Lakonishok, Shleifer , and

Vishmy (1994)

SAT We define asset turnover as the ratio of sales

(SALE) to total assets (AT).

Soliman (2008)

SGA2S SGA to sales is the ratio of selling ,general

and administrative expenses (XSGA) to net sales

(SALE).
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