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Abstract

This paper studies a heterogeneous coefficient spatial factor model that separately addresses both common

factor risks (strong cross-sectional dependence) and local dependency (weak cross-sectional dependence) in

the equity returns. From the asset pricing perspective, we derive the theoretical implications of no asymptotic

arbitrage for the heterogeneous spatial factor model. In empirical work, it is challenging to measure granular

firm-to-firm connectivity for a high-dimensional panel of equity returns. We use extensive business news to

construct firms’ links via which local shocks transmit, and we use those news-implied linkages as a proxy for

the connectivity among firms. Empirically, we document a considerable degree of local dependency among

S&P 500 stocks, and the spatial component does a great job in capturing the remaining correlations in

the de-factored returns. We find that adding spatial interactions to factor models reduces mispricing and

mean-squared errors. We also show that our news-implied linkages provide a comprehensive and integrated

proxy for firm-to-firm connectivity, and it out-performs other existing networks in the literature.
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1 Introduction

Comovement in equity returns are the combined effects of exposures to common risks and local interactions.

Classical asset pricing models such as the classical capital asset pricing model (CAPM) developed by Sharpe

(1964), and the arbitrage pricing theory (APT) by Ross (1976) focus only on the strong pervasive component

driven by a few common factors. Many studies have found those models focusing on strong dependence only

are insufficient to capture all the significant interdependencies in asset returns. Local dependencies still play

a non-negligible role (see for example Gabaix (2011), Acemoglu et al. (2012), Israelsen (2016), Barigozzi and

Hallin (2017), Kou et al. (2018), Hale and Lopez (2019), Bailey et al. (2019a), and Barigozzi and Brownlees

(2019)).

In this paper, we study a spatial factor model that separately addresses both common factor risks and local

dependencies in the equity returns. The factor component and spatial component complement each other, with

the former capturing strong cross-sectional dependence in equity returns and the latter capturing the weak cross-

sectional dependence due to local interactions among entities. To distinguish the two sources of dependencies,

imagine a group of people sitting in a room on a chilly winter day. People might catch a cold because the heater

is broken (common factors) or because someone sitting close to them is ill (local interactions). The network

architecture of entities, like the sitting plan in the previous example, is key to studying local interactions.

Unlike spatial interactions in geographical systems, where there exists a natural network structure, for a high

dimensional panel of equity returns, there is no natural network structure.

We use extensive business news data to construct firms’ linkages via which local shocks transmit, and we use

those news-implied linkages as a proxy for the connectivity among firms. It has been documented that common

news coverage reveals information about linkages among companies, which are related to many economically

important relationships like business alliances, partnerships, banking and financing, customer-supplier, and

production similarity (Scherbina and Schlusche (2015), Schwenkler and Zheng (2019)). We use news data from

RavenPack Equity files Dow Jones Edition for the period between the beginning of 2004 to the end of 2015. This

comprehensive news dataset combines relevant content from multiple sources, including Dow Jones Newswires,

Wall Street Journal, and Barron’s MarketWatch, which produce the most actively monitored streams of news

articles in the financial system. We identify linkages among firms by news co-mentioning.

Using the novel text-based network, we estimate spatial factor models with different sets of common risk

factors. We find a considerable degree of local dependencies among S&P 500 stocks. The spatial interaction

terms are highly significant after controlling for popular factors, and they continue to be significant even after

adding industry-level factors. Different from most spatial econometrics literature, where spatial coefficients are

assumed to be homogeneous, we adopt a heterogeneous coefficient framework from Bailey et al. (2016) and

Aquaro et al. (2020). The model is very flexible, allowing us to capture general local interactions pattern among

a large number of firms. Using that framework, we are able to not only investigate the average effect among

all or some subgroups of firms but also gauge the individual-level effect. We document that apart from the

average spatial effect measured by the mean group (MG) estimator being highly significant, at the individual

level, spatial effect along news-implied linkages are also highly significant. We find that the percentage of

individual contemporaneous spatial parameter being statistically significant at 5% level is over 88% across all

specifications that we consider. This high significance ratio implies that the news-based link identification

method is successful at detecting economically important links. The framework also allows us to examine
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the heterogeneity at subgroup levels. By applying mean group estimation to different industry groups, we

document heterogeneity at the industry level. In particular, financial companies have the highest degree of

local dependencies. We argue that the spatial factor model provides a unified way of addressing both strong

and weak/local dependence in the equity returns. To investigate how well the spatial factor model captures the

remaining dependence in the de-factored component, we examine the changes in correlation structure before and

after adding the spatial component to the traditional factor models. We find that adding the spatial component

reduces the number of non-zero pair-wise cross correlations by a huge margin, and the spatial factor model error

correlation matrix is very close to diagonal. These results show that the spatial component constructed with

news-implied linkages is successful at eliminating remaining correlations from the de-factored returns. We also

compare the degree of mispricing and mean-squared errors for a set of factor models and their spatial augmented

versions. We find that adding spatial/local interaction terms significantly reduces mispricing and mean-squared

errors.

This paper contributes to three strands of literature. The first one is cross-sectional dependencies in equity

returns. Cross-sectional dependence in a large panel is usually complex and reflects different types of interde-

pendencies. Chudik et al. (2011), and Bailey et al. (2016) show that strong cross-sectional dependence (CSD)

and weak cross-sectional dependence (CWD) have different economic implications and statistical behaviors, thus

need to be accounted for separately. Kuersteiner and Prucha (2020) consider a short T panel with cross-sectional

dependence due to both common factor risks and spatial/local interactions. While asset pricing literature has

been focused on strong dependence (i.e., exposures to common risk factors), local dependence receives much

less attention theoretically and empirically. Theoretically, we extend classical arbitrage pricing theory (APT),

which only take strong cross-sectional dependence into account. We propose a flexible spatial factor model

that addresses both strong and weak/local dependence for a large panel in a single framework. Especially,

we derive the implications of no asymptotic arbitrage for our heterogeneous coefficient spatial factor model.

Empirically, we show the benefit from addressing spatial/local interaction in terms of reducing mispricing errors

and mean-squared errors.

Another major contribution is that we use a novel way to proxy the local connectivity among a large set of

firms. Fan et al. (2011) suppose that the error covariance matrix is sparse (i.e., has lots of zeros), which represents

the absence of linkages between firms beyond that contained in the common factors. They identify the location

of non-zero entries by applying thresholding methods to the error sample covariance matrix. Our method

uses information gathered from other sources, specifically news stories, to identify the linkages. There has been

exploding research on quantifying the information embeded in unstructured data like text data. Alternative data

fill the gaps in data availability induced by limited disclosure and slow update, thus complementing traditional

economic datasets. For example, there has been a steep rise in the number of studies on utilizing the information

from text (Garcia (2013), Scherbina and Schlusche (2015), Baker et al. (2016), Hoberg and Phillips (2016), Ke

et al. (2019), Schwenkler and Zheng (2019), etc). This paper explores a comprehensive news dataset that

combines relevant content from multiple sources and identifies linkages among firms by news co-mentioning.

With a measure of local connectivity, we can capture correlations from both strong and the remaining weak

dependence in a large panel using a single step. Without a knowledge of local connectivity, Fan et al. (2011)

need a two-step procedure (they first estimate a factor model, and then use thresholding to estimate the error

sample covariance matrix).

Our work also contributes to network effect or local risk spillover effect among economically linked firms.
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Local risks transmit through economic linkages, and firms with links exhibit excess co-movement. There has

been various proxies for firm to firm networks in the literature, including industry-based peers (Moskowitz

and Grinblatt (1999), Fan et al. (2016), and Engelberg et al. (2018)), analyst co-coverage networks (Kaustia

and Rantala (2013), Israelsen (2016), and Ali and Hirshleifer (2020)), customer-supplier networks (Cohen and

Frazzini (2008)), geographic networks (Pirinsky and Wang (2006), Parsons et al. (2020)), etc. We show that

our news-based linkages provide a comprehensive and integrated proxy for firm-level connectivity. Spatial

factor model estimated with news-implied network out-performs those aforementioned networks in terms of

minimizing the mispricing errors and the mean-squared errors. Even if we consider the union of all those

competing networks, news-implied networks provide equally good performance. We also show that conditional

on all those previously documented links, our news-implied linkages are still important channels of local risk

spillovers.

The rest of the paper is organized as follows. Section 2 describes the difference between strong and weak cross-

sectional dependence and introduces the spatial factor model. Section 3 develops the asset pricing implications

with the presence of local interactions. Section 4 shows the estimation and inference of the heterogeneous

coefficient spatial-temporal model that we use. Section 5 presents the estimation results, performances of

alternative models, and comparisons with previously documented networks. Section 6 concludes. Proofs,

technical details, and supplementary figures and tables are in the Appendices.

Notations: If {fn}∞n=1 and {gn}∞n=1 are both positive sequence of real numbers, then fn = Θ(gn) if there

exist N0 ≥ 1 and positive finite constants C0 and C1, such that infn≥N0
(fn/gn) ≥ C0, and supn≥N0

(fn/gn) ≤

C1. For a N×N real matrix A = (aij), define its maximum column sum norm by ‖A‖1 = max1≤j≤N
∑N
i=1 | aij |,

and its maximum row sum norm by ‖A‖∞ = max1≤i≤N
∑N
j=1 | aij |.

2 Modelling Cross-Sectional Dependence by Spatial Factor Model

2.1 Strong Dependence: Factor Model

Consider the factor model

rt − rft1 = α+ Bft + εt, t = 1, . . . , T, (1)

where rt is the N × 1 vector of equity returns at t, rft is the risk free rate at t, and 1 is N × 1 vector of ones.

ft is the K × 1 vector of common risk factors, and B is the N ×K factor loadings, where βik is the loading of

asset i on factor k. Let
N∑
i=1

| βik |= Θ(Nαβk ), for k = 1, . . . ,K,

‖B‖1 = max
1≤k≤K

N∑
i=1

| βik |= Θ(NαB),

(2)

where Θ denotes the exact order of magnitude, αβk measures how pervasive the kth factor is, and αB =

maxk(αβk) measures how pervasive the factor component Bft is. In the standard factor models, it is assumed

that αβk > 0 for k = 1, . . . ,K, and αB = 1, so that each factor has non-diminishing effect on the system

and exposures to common risk factors give rise to strong cross-sectional dependence, which is systematic and

non-diversifiable.
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2.2 Weak/Local Dependence: Spatial Model

Consider the canonical spatial autoregressive model with homogeneous spatial coefficient

rt = α+ ψWrt + εt, t = 1, . . . , T, (3)

where W is the N×N adjacency matrix that specifies the channels from which shocks transmit, where a typical

entry wij gives the influence of the returns of j on that of i. The strength of spatial risk spillovers is represented

by the parameter ψ.

Spatial dependence characterizes weak cross-sectional dependence where interactions are local. For demon-

stration, we re-write Equation 3 as follows:

rt = G(ψ)νt, (4)

where G(ψ) = (IN −ψW )−1 and νt = α+ εt. Equation 4 can be interpreted as a factor model with N factors.

G(ψ) is the N ×N factor loadings, where gij is the loading of i on factor j. All factors are weak and only have

local effects if the following absolute summability condition is true

N∑
i=1

| gij | ≤ c for j = 1, . . . , N , where c is a positive constant. (5)

The absolute summability condition Equation 5 is equivalent to a bounded column sum matrix norm condition

on the Leontief inverse G(ψ) = (IN − ψW )−1. As in LeSage (2008),

G(ψ) = (IN − ψW )−1 = I + ψW + ψ2W 2 + ... = I +

∞∑
j=1

ψjW j . (6)

The Leontief inverse take accounts of direct interaction effect and higher-order indirect effects. The assumption

that the column sum of G(ψ) = (IN − ψW )−1 is uniformly bounded in the number of cross-sectional units N

is usually assumed in spatial econometrics (see Kelejian and Prucha (1998), Kelejian and Prucha (1999), Lee

(2004)) to limit the cross-sectional correlation to a manageable degree. Some recent developments show that

we may relax this assumption (Aquaro et al. (2020), Pesaran and Yang (2021)1). We take that assumption as

a modelling assumption to distinguish strong and weak/local dependence. In particular, for weak dependence,

no cross-sectional unit exerts pervasive effects on the system and the interactions are local. There will be more

discussions in subsection 2.3.

2.3 Strong and Weak Dependence: Spatial Factor Model

Comovement in a large panel of equity returns arises due to both strong and weak cross-sectional dependence.

Many studies have found that factor models that only focus on the non-diversifiable type of risks are insufficient

to capture all the cross-sectional dependence in equity returns. We study a heterogeneous coefficient spatial fac-

tor model written as Equation 7 where the factor component and the spatial component complement each other,

with the former addressing strong dependence and the latter addressing spillovers that are non-pervasive/local

in nature (i.e., cross-sectional weak dependence (CWD) define in Chudik et al. (2011)).

rt = α+ Bft + ΨWrt + εt, t = 1, . . . , T, (7)

where Ψ = diag(ψ) = diag(ψ1, . . . , ψN ) is a diagonal matrix with N individual specific contemporaneous spatial

coefficients on the main diagonals.

1They explicitly consider the case where there are dominant units that generate pervasive effect.
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The spatial component has several main features. Firstly, the spillover coefficients are heterogeneous. One

might reasonably suspect that the sensitivities to neighbours’ risks are different from firm to firm. While the

restrictive assumption that all entities share the same spatial coefficient is necessary for small T , it can be

relaxed when T is big. Some recent work in the spatial literature (see LeSage and Chih (2018), Aquaro et al.

(2020), and Chen et al. (2021)) consider heterogeneity in spatial parameters explicitly. We follow the framework

from Aquaro et al. (2020), and they show that a heterogeneous spatial autoregressive model like Equation 7 can

be consistently estimated with large T. We utilize this nice feature to explore the heterogeneity in the strength

of local dependency. Moreover, we could examine the heterogeneity pattern at subgroup levels (such as industry

levels) using mean-group estimation, which is a popular tool in heterogeneous panel literature. Secondly, it is

possible to add weakly exogenous spatial-temporal terms
∑L
l=1 ΨlWrt−l to Equation 7. ΨlWrt−l corresponds

to the spatial-temporal term at the lth lag for l = 1, . . . , L, where Ψl = diag(ψl) = diag(ψl,1, . . . , ψl,N ) is a

diagonal matrix of spatial-temporal parameters at the lth lag. These dynamic terms may account for potential

market microstructure effects, which is important in our empirical application to daily individual stock returns.

Kou et al. (2018) consider a special case of this model, which they call the Spatial APT model. In particular,

they consider the case where N is small, L = 0 (no temporal dynamics), ψi = ψ (homogeneous spatial effects),

and homoscedastic errors. Kou et al. (2018) derives the implications of the absence of arbitrage on the parameters

of the model, in particular on the intercept vector α. In section 3, we extend their analysis by deriving the

implications of no arbitrage under our framework.

In this paper, we impose the following assumptions on the spatial factor model (Equation 7):

Assumption 1 E(εt) = 0, E(ftε
′
t) = 0, E(εtε

′
t) = Ω, σ2

i = var(εit) ≤ σ̄2.

Assumption 2 Let
∑N
i=1 | βik |= Θ(Nαβk ), for k = 1, . . . ,K, and ‖B‖1 = max1≤k≤N

∑N
i=1 | βik |= Θ(NαB)

as Equation 2. αβk > 0 for k = 1, . . . ,K, and αB = 1.

Assumption 3 supi | ψi |< 1
‖W‖∞

, for i = 1, . . . , N .

Assumption 4 Define G(Ψ) = (IN−ΨW )−1, where gij is a typical entry of G.
∑N
i=1 | gij | ≤ c for j = 1, . . . , N

for some positive constant c.

Remark 1: Assumption 2 guarantees that each factor has non-diminishing effect on the system, and the exposures

to common risk factors give rise to strong cross-sectional dependence. We only assume that at least one factor

is strong (i.e., with α = 1), and all other factors are not weak. This is because in practice we may want to add

many factors, which have different degrees of pervasiveness. For example, Bailey et al. (2020) find that for the

factors proposed in the finance literature for asset pricing, only the market factor is strong over all the windows

they consider.

Remark 2: Assumption 3 is to ensure (IN −ΨW ) is invertible and G(Ψ) = (IN −ΨW )−1 exists.

Remark 3: Assumption 4 assumes that the column sums of G(Ψ) = (IN − ΨW )−1 is uniformly bounded in

absolute values as N goes to infinity. This ensures that no cross-sectional unit exerts pervasive effects on the

system and the interactions are local. From our view, the correlation beyond factors should be weak. Pervasive

dependence should be addressed by adding sufficient common factors into the model. Similar assumptions are

made in Fan et al. (2008) and Fan et al. (2011), where they assume that after taking out the influence of

Fama-French three factors, the remaining cross-sectional dependence is weak in the way defined in Chamberlain
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and Rothschild (1983). But be aware that this assumption a modelling assumption, and it is not required for

stationarity and consistent estimation of the model (see Aquaro et al. (2020)).

The spatial factor model provides a unified way of addressing the remaining dependence in the de-factored

component. Fan et al. (2011) identify the location of significant correlations by applying thresholding methods

to the factor model error sample covariance matrix. To capture both factor-driven strong dependence and re-

maining weak dependence in a large panel, they need a two-step procedure. Our method provides an alternative,

which can be achieved in a single step. Compared with purely statistical methods, our method also has the

advantage of being interpretable given that our linkages are constructed using information from business news.

To investigate how well the spatial factor model captures the remaining dependence in the de-factored

component, we can examine the changes in correlation structure before and after adding the spatial component

to factor models. If the spatial component is doing a good job in terms of explaining the remaining local

dependence, then we should expect to see the number of pairs with non-zero pair-wise error cross correlations

being reduced by adding the spatial component. In our application, we estimate the number of non-zero pair-

wise cross correlations of residuals from (1) a set of factor models, and (2) their corresponding spatial augmented

models. For N cross-sectional units, the problem considers testing N(N − 1)/2 null hypotheses simultaneously.

We use multiple testing procedure to control for the overall size of the tests.

Under the factor model settings (Equation 1), this task is relatively easy. Pesaran et al. (2004) establishes

the asymptotic distribution of error correlation coefficient under the null H0,ij : ρij = 0 for panel data models

as follows:

yit = αi + β′ixit + εit, (8)

where V ar(εt) = Σ = (σij) is an N ×N symmetric, positive definite matrix. Denote the correlation coefficient

of εit and εjt by ρij . To estimate the correlation coefficient of errors, one needs to first obtain residuals ε̂it as

ε̂it = yit − x′it(X
′
iXi)

−1X ′iyi, (9)

where Xi is the T ×K matrix of regressors for unit i, and yi is the T × 1 vector of the dependent variable for

unit i. The sample estimate of ρij is given by

ρ̂ij =
ε̂′iε̂j/T

(ε̂′iε̂i/T )1/2(ε̂′j ε̂j/T )1/2
(10)

When xit are strictly exogenous, under the null H0,ij : ρij = 0,

√
T ρ̂ij → N(0, 1) as T →∞. (11)

To test the hypothesis H0,ij : ρij = 0, for p being the chosen nominal size, we can use 1√
T

Φ−1(1 − p/2) as

the critical value, where Φ−1 is the inverse cdf of standard normal. However, to test ρij = 0 for all i 6= j

jointly, we need to take the multiple testing issue into account. From Bonferroni (1935), given that there are

ntest = N(N − 1)/2 such tests, for the family-wise error rate (FWER) to be p, it is sufficient to set the nominal

size for each individual test pi = p/ntest for i = 1, . . . , ntest, so that the critical value for each | ρ̂ij | becomes

1√
T

Φ−1(1− p/2ntest).2

2There are more advanced methods of choosing threshold values, like Bailey et al. (2019b). However, the theory does not go

through for testing error correlation of the spatial factor model. To have a fair comparison, we consider Bonferroni type of correction

for both factor and spatial factor model.
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The nice theoretical result (Equation 11) is derived under the assumptions of exogeneity of regressors.

However, the spatial factor model this is not the case. For the spatial factor model we consider (Equation 7),

the spatial autoregressive term Wrt is endogenous, which makes the result from Equation 11 fail. Given that,

we conduct bootstrap inference for the error correlations of the spatial factor model, which proceeds in the

following steps.

We first estimate the spatial factor model (Equation 7) and collect the estimated parameters α̂, B̂, Ψ̂. We

save the residual values R = {ε̂11, . . . , ε̂1T , . . . , ε̂N1, . . . , ε̂NT }. In the next step, for b = 1, . . . , B, under the null

of diagonal error correlation matrix, we draw i.i.d ε̂bit from R, and generate the bth bootstrap sample as

rbt = (I − Ψ̂W )−1(α̂+ B̂ft + εbt), t = 1, . . . , T. (12)

We re-estimate the model using the bootstrap sample. Next, we calculate the sample correlation coefficients

ρ̂bij for all i 6= j. We save those N(N − 1)/2 pair-wise cross-correlations for each bootstrap sample b. Finally,

we can draw inference from the empirical null distribution F by computing the critical values associated with a

nominal size value p as F−1(p/2) and F−1(1− p/2). Again, we need to correct for multiple testing issue here,

and the critical values for each ρ̂ij becomes F−1(p/2ntest) and F−1(1− p/2ntest).

3 Arbitrage Pricing Theory Under Spatial Factor Model

In this section, we derive the asset pricing implications of our heterogeneous coefficient spaital factor model

(Equation 7). We follow Ingersoll Jr (1984), and consider a fixed infinite economy where a sequence of nested

subsets of assets are examined. For the nth economy, a new asset is added to the (n− 1)th economy.

rn′ = (rn−1′, rn). (13)

Since APT is a cross-sectional approach, we drop the time subscript. We denote the size of economy by

superscript n, and a portfolio in the nth economy is denoted as cn ∈ Rn. 1n is the vector of n ones. We consider

subsequences of assets, where subsequences are indexed by v. There are asymptotic arbitrage opportunities if

there is a subsequence of portfolios that satisfy the following conditions:

V ar(cv ′rv)→ 0 as v →∞,

E(cv ′rv) ≥ δ > 0 for all v,

cv ′1v = 0 for all v.

(14)

Theorem 1 Assume that the returns are generated by the heterogeneous spatial factor model (Equation 7), and

Assumption 1-4 hold. If there is no arbitrage opportunities described in Equation 14, then there is a sequence

of K by 1 vector of factor premiums λn and a constant λn0 such that the following approximation holds

αn ≈ (In −ΨnWn)1nλn0 + Bnλn. (15)

Define pricing error vector as:

vn = αn − (In −ΨnWn)1nλn0 −Bnλn. (16)

The approximation Equation 15 holds in a sense that there is a positive number V such that the weighted sum

of squared pricing errors is uniformly bounded,

(vn)′(Ωn)−1(vn) ≤ V <∞ for all n. (17)
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Corollary 1.1 Let λmax denote the largest eigenvalue of the limit covariance matrix Ωn, then V = qλmax for

a positive number q.

Corollary 1.2 Suppose all factors are traded. The risk factor fk before de-meaning is denoted as f̃k, which is

the payoff of the kth tradable zero-cost portfolio, where

fk = f̃k − E(f̃k) for k = 1, . . . ,K. (18)

If there exists a risk free asset with rate rf , the spatial factor model (Equation 7) can be written as:

r̃ = α̃+ Bf̃ + ΨW r̃ + ε,

where r̃ = r − rf1 is the vector of excess returns,

f̃ = (f̃1, . . . , f̃K)′,

α̃ = α− (I −ΨW )1rf −BE(f̃).

(19)

Then the no arbitrage condition for an infinite economy where asset returns are generated by the spatial factor

model is:

α̃n ≈ 0. (20)

α̃n is the pricing error in this special case. The approximation Equation 20 holds in a sense that there is a

positive number V such that the sum of squared pricing errors is uniformly bounded,

(α̃n)′(Ωn)−1(α̃n) ≤ V <∞ for all n. (21)

And λn0 , λn in theorem 1 can be identified as

λn0 = rf ,

λn = E(f̃).
(22)

Corollary 1.3 In addition to the assumptions from corollary 1.2 (there exists risk free assets and all factor are

traded), if we further assume that errors are uncorrelated, then for any δ > 0, there is a constant Nδ such that

the number of elements in α̃ that are bigger than δ in absolute values is uniformly bounded by Nδ,

lim
n→∞

n∑
j=1

I(| α̃j |> δ) < Nδ <∞ (23)

Remark 1: corollary 1.1 implies that the correlation structure of Ω = E(εtε
′
t) affects the bound V . The less

correlation there in Ω, the smaller V is, and the better the approximation implied by Equation 15 is. Spatial

factor model addresses weak/local dependence beyond strong dependence captured by factors, and we expect

that there is less correlation in Ω. Compared with factor models, the spatial factor model is expected to give a

better approximation.

Remark 2: corollary 1.2 points out a special case useful for empirical work. Assuming that there exists risk free

asset and all factors are traded, we can just look at the spatial factor model with the dependent variable being

the excess returns (Equation 19). In particular, to test the theoretical restrictions we just need to examine how

close to zero the intercept vector α̃ is.

Remark 3: theorem 1 and the corollaries suggest some statistics that we can employ to compare the relative

performance of different asset pricing models. In particular, the L1, L2 norms of mispricing errors, and the

number of components with big mispricing errors could be useful in measuring how well the approximation is.
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Remark 4: theorem 1 and the corollaries can be easily extended to spatial factor models with more than one

spatial spillover channels, for example, the two-W model in Bailey et al. (2016).

Proofs of theorem 1, corollary 1.1, corollary 1.2, and corollary 1.3 are in the section A of the Appendix.

4 Estimation and Inference

The corollary 1.2 points out a special case useful for empirical work. From now on we assume there is risk free

asset, and all factors are traded, and we work with the panel spatial factor model where the dependent variable

is the excess returns (multi-period Equation 19).

r̃t = α̃+ Bf̃t + ΨW r̃t + εt, t = 1, . . . , T, (24)

where r̃t = (r̃1t, . . . , r̃Nt) is the N by 1 vector of excess returns at t, and f̃t = (f̃1t, . . . , f̃Kt)
′ is the vectors

of K factors at t. W is the N by N adjacency matrix, where a typical entry is denoted as wij . Without

loss of generality , we set wii = 0 for all i, and we assume that wij ≥ 0. Following the convention in spatial

econometrics, we further row normalize W so that
∑N
j=1 wij = 1 for all i. Here, εt is the vector of errors at t,

which satisfies var(ε) = Σ = diag(σε2) = diag(σ2
1 , . . . , σ

2
N ), where σ2

i =var(εit) is allowed to be heteroskedastic.

An extension of Equation 24 is to incorporate weakly exogenous spatial-temporal terms:

r̃t = α̃+ Bf̃t + Ψ0W r̃t +

L∑
l=1

ΨlW r̃t−l + εt, t = 1, . . . , T, (25)

where we denote the contemporaneous spatial coefficients using Ψ0, and L is the number of spatial-temporal

terms to incorporate. In what follows, we set L = 5 to control for within-week dynamics. These dynamic terms

may account for potential market microstructure effects, which is important in our empirical application to

daily individual stock returns. This modification has been used in Eugene (1992), see also Dimson (1979).

There are mainly two classes of methods that have been developed in the literature to estimate spatial

models: the maximum likelihood method (Lee (2004), Lee and Yu (2010), Shi and Lee (2017), and Aquaro et al.

(2020), among others), and the IV/GMM approach (Kelejian and Prucha (1998), Kelejian and Prucha (1999),

Lee (2007), and Kuersteiner and Prucha (2020) among others). In this paper, we estimate the heterogeneous

coefficient spatial-temporal model (Equation 25) by the QML procedure proposed in Bailey et al. (2016) and

Aquaro et al. (2020). We collect all the parameters in Equation 25 in the (N ∗ (K + L + 3)) by 1 vector

θ = (α̃′,β′1, . . . ,β
′
K ,ψ

′
0, . . . ,ψ

′
L,σ

′
ε2)′, and denote the vector of true values by θ0. The log-likelihood function

of Equation 25 is written as follows:

LT (θ) = −NT
2

ln(2π)− T
2

N∑
i

ln
(
σ2
i

)
+
T

2
ln | S′(ψ0)S(ψ0) | −1

2

T∑
t=1

[S(ψ0)r̃t−Bxt]′−1[S(ψ0)r̃t−Bxt], (26)

where S(ψ0) = IN − Ψ0W , and r̃t = (r̃1t, . . . , r̃Nt). We stack the constant and all the weakly exogenous

variables for i at t in xit = (1, f̃1t, . . . , f̃Kt,
∑N
j=1 wij r̃jt−1, . . . ,

∑N
j=1 wij r̃jt−L), and xt = (x′1t, . . . , x

′
Nt)
′ is

the ((1 + K + L) ∗ N) by 1 vector. B is the N by ((1 + K + L) ∗ N) block diagonal matrix with elements

b′i = (α̃i, β1,i, . . . , βK,i, ψ1,i, . . . , ψL,i)
′ on the main diagonal and zeros elsewhere.

The quasi maximum likelihood estimator θ̂QMLE maximizes Equation 26. The error terms need not be

Gaussian, but when they are, θ̂QMLE is the maximum likelihood estimator of θ. Note that conditional on ψ0,

the system is linear, so that we can concentrate out the parameters B,σε2 to reduce the dimensionality and

hence computational burden.
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Aquaro et al. (2020) provides sufficient conditions for consistency and asymptotic normality of θ̂QMLE in the

case where T is large and N is fixed, and consistency and asymptotic normality for the mean group estimators

in the case where both T and N are large but
√
N/T → 0. Further details regarding the identification conditions

and inference can be found in the section B of the appendix.

5 Data

We consider daily returns of S&P 500 stocks for our application. All the stock market related data are from the

Center for Research in Security Prices (CRSP). Daily factor returns and industry classification information are

obtained from Kenneth French’s website. Accounting data are from the merged CRSP/Compustat database.

Data used to construct alternative networks are described in details in subsection 6.3.

The news data are obtained from RavenPack Equity files Dow Jones Edition for the period January 2004 to

December 2015. This comprehensive news dataset combines relevant content from multiple sources, including

Dow Jones Newswires, Wall Street Journal, and Barron’s MarketWatch, which produce the most actively

monitored streams of news articles in the financial system. Each unique news story (identified by unique

story ID) tags the companies mentioned in the news by their unique and permanent entity identifier codes

(RP ENTITY ID), by which we link to stock identifier TICKER and PERMNO.

Inspired by Scherbina and Schlusche (2015) and Schwenkler and Zheng (2019), we identify links by news

co-mentioning. To be more specific, if a piece of business news reports two and only two companies together,

then the two firms have some business relationship/link. Although news that mentions more than two compa-

nies together may carry potential information about links, they provide noisier information. We also remove

news with topics including analyst recommendations, rating changes, and index movements as these types of

news might stack multiple companies together when they actually do not have real links. Table 10 provides

descriptive statistics for RavenPack Equity files Dow Jones Edition dataset during the sample period. Since

our comprehensive news dataset combines several sources, given a similar length of sample period, the number

of unique news stories is more than ten times larger than that from Scherbina and Schlusche (2015) and more

than eight hundred times than that from Schwenkler and Zheng (2019). For link identification purposes, we

only use sample news (1) are not about topics mentioned above, (2) tag S&P 500 companies, and (3) mention

exactly two companies, which is a subsample of 1, 637, 256 unique news stories.

From all the links identified using this methodology, some links are transitory while some are more long-

lasting. To gauge the persistency of links, we split full sample news data into 12 yearly link identification

windows. Table 11 is the frequency distribution table of the number of yearly link identification windows that

a pair gets identified as economic neighbours for all possible pairs (i, j) in our sample. 72.80% of the pairs

never get co-mentioned during the sample period. For all the linked pairs (i, j) identified throughout the sample

period, 49.6% of them are only mentioned in one yearly window. We consider those pairs as temporarily linked.

They could get co-mentioned multiple times within a yearly window. But out of that one-year window, they

are never mentioned together. To further reduce noise, we say a pair (i, j) has persistent economic relationships

if they are identified in more than a certain number (1 ≤ m ≤ 11) of yearly identification windows. For the

construction of full sample adjacency matrix W , we set wij to the number of times i and j are co-mentioned

throughout the sample if the pair (i, j) gets co-mentioned in more than m yearly identification windows (i.e.,

their link is persistent), and to zero otherwise.
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Table 12 presents the number of identified pairs aggregated at industry level for threshold m = 1. Results for

higher threshold values are shown in Table 13, and Table 14. We classify stocks into Fama-French 12 industries

based on their Standard Industrial Classification (SIC) code. Compared with companies from other industries,

financial companies, hi-tech companies, and manufacturing companies are more connected. Another important

feature is that there are a lot of intra-industry links. Except for some industries with very few stock like

Durables and Telecommunication, whose statistics should be interpreted with care, other industries all have a

high percentage of intra-industry links. Comparing tables of adjacency matrices with different threshold values

m, we can tell that although higher threshold values reduce the absolute number of identified pairs, the relative

industry level network remains very robust.

6 Results

6.1 Main Results

For full sample estimation, we keep S&P 500 stocks that have no missing observations for the period 2004

to 2015, which leaves us N = 394 stocks. Adjacency matrix W contains all the persistent links (for different

thresholds m) identified throughout the sample. As a convention in spatial econometrics, we then apply row-

normalization to W so that
∑N
j wij = 1 for all i = 1, . . . , N . We investigate several models under the general

framework Equation 25:

• Model 1: Spatial CAPM model

r̃t = α̃+ β1fMRT,t +

L∑
l=0

ΨlW r̃t−l + εt. (27)

• Model 2: Spatial factor model with Fama-French three factors

r̃t = α̃+ β1fMRT,t + β2fSMB,t + β3fHML,t +

L∑
l=0

ΨlW r̃t−l + εt. (28)

• Model 3: Spatial factor model with Fama-French five factors

r̃t = α̃+ β1fMRT,t + β2fSMB,t + β3fHML,t + β4fRMW,t + β5fCMA,t +

L∑
l=0

ΨlW r̃t−l + εt. (29)

• Model 4: Spatial factor model with Fama-French five factors plus Momentum factor

r̃t = α̃+β1fMRT,t+β2fSMB,t+β3fHML,t+β4fRMW,t+β5fCMA,t+β6fMOM,t+

L∑
l=0

ΨlW r̃t−l+εt. (30)

The parameters (N ∗ (K + L + 3)) in Equation 25 are estimated using quasi maximum likelihood (QML).

Given the huge amount of parameters in the model, here we only report some important summary statistics of

the estimates in Table 1.3 For a heterogeneous coefficient panel model, what is often of interest to empirical

researchers is the average estimates across all entities (or all entities within a sub-group). If we assume that

individual-specific coefficients are randomly distributed around their common means as follows:

βk,i = λk + ζk,i, ψl,i = ψl + ςl,i for k = 1, . . . ,K, l = 1, . . . , L, and i = 1, . . . , N .

ηi = (ζ′i, ς
′′
i)
′ ∼ IID(0,Ωη).

(31)

3Full estimation results can be requested from the author.
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The common mean parameters βk and ψl for k = 1, . . . ,K, l = 1, . . . , L are the the objects of interest and they

can be consistently estimated with the following mean group (MG) estimator given N and T are large, with
√
N/T → 0. 4.

β̂MG
k1 =

1

N

N∑
i=1

β̂k1,i and ψ̂MG
l =

1

N

N∑
i=1

ψ̂l,i. (32)

For a heterogeneous coefficient spatial model, we can only identify the spatial coefficients of those units with at

least one link. Spatial coefficients of those units with zero link cannot be identified, and we need to restrict them

to be zeros. If we apply the full sample adjacency matrix W discussed above with threshold value m = 1, only

N0 = 7 out of N = 394 companies do not have any long-run links. Np = N −N0 = 387 units have unrestricted

spatial coefficients. In contrast, individual-specific factor coefficients and intercepts are identified for all units,

with Np = N = 394.

We estimate Model 1 - Model 4 over the full sample period. We report the mean group (MG) estimates with

their standard errors and the percentages of companies with statistically significant parameters at 5% level for

models estimated with threshold value m = 1 in Table 1. Results for alternative thresholds m are reported in

Table 15 and Table 16.

(1) factor component (2) spatial-temporal component

α β1 β2 β3 β4 β5 β6 ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

(1) Spatial CAPM

MG 0.015 0.564 0.446 0.002 -0.008 0.001 -0.003 0.004

( 0.001) ( 0.022) ( 0.020) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 9.1% 90.4% 89.9% 51.9% 28.2% 20.7% 30.2% 21.7%

Np 394 394 387 387 387 387 387 387

(2) Spatial factor model (Fama-French three factors)

MG 0.013 0.529 0.129 -0.137 0.489 0.002 -0.008 -0.001 -0.001 0.003

( 0.001) ( 0.021) ( 0.014) ( 0.022) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 6.1% 86.0% 75.1% 82.7% 89.7% 54.0% 27.1% 21.4% 29.7% 18.9%

Np 394 394 394 394 387 387 387 387 387 387

(3) Spatial factor model (Fama-French five factors)

MG 0.011 0.544 0.144 -0.137 0.140 0.179 0.493 0.007 -0.007 -0.001 -0.002 0.002

( 0.001) ( 0.021) ( 0.014) ( 0.023) ( 0.022) ( 0.021) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 5.6% 86.8% 73.9% 82.5% 74.6% 73.6% 89.1% 52.2% 27.6% 22.2% 27.9% 18.6%

Np 394 394 394 394 394 394 387 387 387 387 387 387

(4) Spatial factor model (Fama-French five factors plus Momentum)

MG 0.015 0.471 0.124 -0.116 0.074 0.113 -0.010 0.545 0.002 -0.014 0.002 -0.008 0.005

( 0.001) ( 0.022) ( 0.014) ( 0.021) ( 0.022) ( 0.021) ( 0.007) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 4.8% 86.5% 73.3% 79.2% 75.1% 74.1% 59.4% 88.1% 52.7% 27.4% 23.3% 27.9% 18.6%

Np 394 394 394 394 394 394 394 387 387 387 387 387 387

Table 1: QML estimation results of Equation 27 to Equation 30 using full sample.

Note: threshold m = 1. For each panel , the first row gives the mean group (MG) estimates for each parameter

with their standard errors in the parenthesis. The row of each panel gives the percentages of unrestricted units

with statistically significant parameters at 5% level, and the last row gives the number of unrestricted units Np

for each parameter.

4See Pesaran and Smith (1995) for proofs of the consistency when individual-specific coefficients are independently distributed.

Recent development by Chudik and Pesaran (2019) proves the consistency under weakly correlated individual-specific estimators.

In both cases, T and N are required to be large with
√
N/T → 0. Intuitively, big T is required for the consistent estimation

of individual-specific coefficients, and N needs to be big enough for the consistent estimation of the means. To see how the MG

estimators behave in the context of heterogeneous spatial-temporal model, see Aquaro et al. (2020)
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Contemporaneous local dependency parameter ψ0 is highly statistically significant under all specifications.

Among 387 unrestricted contemporaneous spatial coefficients ψ0,i, more than 88% of them are individually

significant under all cases. This high significance ratio implies that the new-implied linkage identification

method is very successful at detecting relevant links. If our data contain a lot of spurious links, we will be more

likely to see the spatial parameters to be insignificant for many individuals. Local dependencies also exhibit

strong economic importance: the mean group (MG) estimates of ψ0 are around 0.45−0.55 over the four models

we consider, which is comparable to the average strength of the market factor, with the mean group (MG)

estimates of market beta lying between 0.47− 0.56 across models.

Dynamic spatial dependency terms are also statistically significant, although smaller in economic magnitude.

For the first lag ψ1, there are more than 50% of ψ1,i are individually significant under all cases. For further

lags, there are always more than 20% of ψl,i (l = 2, . . . , 5) are individually significant.

Adding more common risk factors does not weaken local dependencies. The magnitudes of mean group esti-

mates and the percentages of companies with statistically significant parameters at 5% level do not change with

the number of factors we include. Interestingly, the magnitude of average contemporaneous local dependency

captured by ψMG
0 is the largest for Model 4, while the magnitude of average exposures to market factor is the

smallest.

A large proportion of the news-implied links that we identify are intra-industry links. It has been documented

widely that stocks within the same industry exhibit excess co-movement beyond common risk factors at market

level (Moskowitz and Grinblatt (1999), Fan et al. (2016), Engelberg et al. (2018)). In order to control for

industry factors as an additional source of co-movement, we further augment Equation 27 to Equation 30 with

industry factors.

r̃t = α̃+ Bf̃t + βI f̃IND,t +

L∑
l=0

ΨlW r̃t−l + εt. (33)

We use Fama French 12 equal-weighted industry portfolios. We choose to use broad industry classification and

equal weighting. This is because we are dealing with S&P 500 stocks, and we do not want industry returns to

be dominated by several large stocks within that industry.

Table 2 reports the results for models with industry factors. Industry factors are highly significant in all cases,

and the mean group (MG) estimates of industry beta are between 0.41−0.45. The introduction of the industry

factor largely weakens the effect of the market factor, with the average market beta being reduced to 0.20−0.23.

On the other hand, the magnitudes of local dependencies are only slightly reduced by the introduction of the

industry factor. This shows that our results are not driven by exposure to common industry-level shocks but

by granular interactions. Using other equal-weighted industry factors does not affect this finding.
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(1) factor component (2) spatial-temporal component

α β1 β2 β3 β4 β5 β6 βI ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

(1) Spatial CAPM+ Industry factor

MG 0.009 0.231 0.407 0.387 -0.015 -0.024 -0.008 -0.008 0.002

( 0.002) ( 0.025) ( 0.021) ( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 7.9% 81.0% 84.5% 87.3% 49.6% 46.0% 27.9% 30.5% 21.7%

NP 394 394 394 387 387 387 387 387 387

(2) Spatial factor model (Fama-French three factors+ Industry factor)

MG 0.007 0.197 -0.120 -0.156 0.451 0.415 -0.018 -0.019 -0.009 -0.007 -0.000

( 0.002) ( 0.026) ( 0.018) ( 0.018) ( 0.026) ( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 8.1% 79.2% 72.8% 82.0% 81.7% 86.6% 51.7% 39.8% 27.1% 28.4% 19.6%

Np 394 394 394 394 394 387 387 387 387 387 387

(3) Spatial factor model (Fama-French five factors+ Industry factor)

MG 0.005 0.212 -0.108 -0.164 0.106 0.199 0.445 0.422 -0.014 -0.018 -0.009 -0.008 -0.001

( 0.002) ( 0.025) ( 0.018) ( 0.019) ( 0.019) ( 0.017) ( 0.025) ( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 6.9% 77.7% 71.6% 81.5% 69.0% 70.8% 82.0% 86.6% 46.8% 36.7% 28.2% 28.4% 20.4%

Np 394 394 394 394 394 394 394 387 387 387 387 387 387

(4) Spatial factor model (Fama-French five factors plus Momentum+ Industry factor)

MG 0.005 0.221 -0.104 -0.155 0.102 0.194 0.003 0.435 0.420 -0.013 -0.017 -0.009 -0.008 -0.001

( 0.002) ( 0.026) ( 0.018) ( 0.018) ( 0.019) ( 0.017) ( 0.007) ( 0.025) ( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 6.3% 79.4% 71.1% 80.2% 69.0% 67.8% 54.1% 80.7% 85.5% 46.0% 37.2% 27.6% 27.9% 20.4%

Np 394 394 394 394 394 394 394 394 387 387 387 387 387 387

Table 2: QML estimation results of industry factors augmented models (Equation 33) using full

sample.

Note: W is constructed using threshold m = 1. Estimation results for alternative threshold values are reported

in Table 17 and Table 18.

So far, we have shown the mean group (MG) estimation results for whole sample companies. It is also

interesting to gauge heterogeneity at sub-group levels. It is reasonable to suspect that the mean sensitivities to

local risk spillovers are different for different industry groups. To explore this heterogeneity, here we adopt the

random coefficient assumptions at the industry level. Subscript g denotes industry membership, and we classify

stocks into six broad industries5.

βk,i,g = βk,g + ζk,i,g, ψl,i,g = ψl,g + ςl,i,g

for k = 1, . . . ,K, l = 1, . . . , L ,and i = 1, . . . , N , g = 1, . . . , G.

ηi,g = (ζ′i,g, ς
′′
i,g)
′ ∼ IID(0,Ωη).

(34)

The industry-level common mean parameters for industry g can be consistently estimated when Ng, the number

of cross-sectional units within that industry is large.

β̂MG
k,g =

1

Ng

∑
i∈Ng

β̂k,i,g and ψ̂MG
l,g =

1

Ng

∑
i∈Ng

ψ̂l,i,g. (35)

We report the mean group (MG) estimates by industry for the spatial factor model with Fama-French five

factors plus the momentum factor Equation 30 and its counterpart with the industry factor in Table 3 and

5We adopt broad industry classification to guarantee that there are a large number of stocks within each industry since mean

group estimation requires large N to be consistent. We build the industry classification on top of the Fama-French five industry

definitions where they classify all stocks according to their SIC code into five broad groups: “Consumer”, “Health”, “Hi-tech”,

“Manufacturing” and “Others”. For the first four categories, we keep the same definitions as Fama and French. Since there are a

large proportion of financial companies in the S&P500 universe, it would be interesting to separate financial firms from those in

the “Others” category. Among the stocks that fall into “Others”, we categorize the stocks with a SIC in the range 6000− 6799 as

“Finance” and put the remaining in the “Others” category.
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Table 4, respectively. Both tables reveal that our main conclusions that equity returns are affected by that

of their economic neighbours are very robust to the industry disaggregation. Local dependencies are highly

significant for all six industries. The industrial mean group (MG) estimates of ψ0 are between 0.36 − 0.58

for the Spatial factor model with Fama-French five factors and the momentum factor (Equation 30). After

controlling for the industry factor, the estimates still range from 0.31− 0.56.

Financial companies have the largest exposures to their neighbours’ shocks. And this high level of sensitivity

to local shocks cannot be explained by exposures to common industry shocks as the estimates of spatial pa-

rameters stay unchanged with the introduction of the industry factor. After controlling for the industry factor,

the mean group (MG) estimates of ψ0 for the financial industry is still as large as 0.56 (0.05). By contrast,

the introduction of the industry factor reduces the estimated local dependencies for the consumer industry,

health industry, and manufacturing industry by a larger margin. Apart from the large contemporaneous spatial

coefficient, it is also worth noticing that financial companies also have a stronger momentum spillover effect.

The percentage of significant spatial-temporal coefficients6 for financial companies are much larger than that

for other industries at any lag.

(1) factor component (2) spatial-temporal component

α β1 β2 β3 β4 β5 β6 ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

Panel A: Finance

MG 0.017 0.471 0.073 0.410 -0.002 -0.086 -0.101 0.584 -0.040 -0.013 -0.008 -0.007 0.003

( 0.002) ( 0.055) ( 0.037) ( 0.068) ( 0.058) ( 0.050) ( 0.019) ( 0.044) ( 0.010) ( 0.005) ( 0.004) ( 0.005) ( 0.004)

%sig 5.9% 73.5% 67.6% 86.8% 55.9% 54.4% 64.7% 88.2% 75.0% 47.1% 36.8% 47.1% 29.4%

Np 68 68 68 68 68 68 68 68 68 68 68 68 68

Panel B: Consumer

MG 0.012 0.525 0.186 -0.230 0.303 0.401 -0.048 0.412 0.019 -0.012 -0.002 0.001 -0.000

( 0.003) ( 0.044) ( 0.033) ( 0.023) ( 0.027) ( 0.030) ( 0.015) ( 0.040) ( 0.005) ( 0.004) ( 0.004) ( 0.004) ( 0.003)

%sig 5.3% 85.3% 80.0% 76.0% 82.7% 89.3% 53.3% 86.7% 48.0% 26.7% 28.0% 28.0% 17.3%

Np 75 75 75 75 75 75 75 75 75 75 75 75 75

Panel C: Health

MG 0.026 0.495 0.025 -0.396 -0.149 0.161 0.085 0.364 0.016 -0.003 0.013 0.004 0.005

( 0.007) ( 0.066) ( 0.044) ( 0.038) ( 0.053) ( 0.046) ( 0.022) ( 0.058) ( 0.007) ( 0.004) ( 0.004) ( 0.005) ( 0.005)

%sig 21.4% 92.9% 64.3% 96.4% 64.3% 60.7% 67.9% 89.3% 39.3% 7.1% 17.9% 10.7% 10.7%

Np 28 28 28 28 28 28 28 28 28 28 28 28 28

Panel D: Hi-tech

MG 0.016 0.651 0.163 -0.410 -0.292 0.280 -0.038 0.407 0.009 -0.009 0.005 -0.002 0.007

( 0.004) ( 0.045) ( 0.032) ( 0.028) ( 0.047) ( 0.042) ( 0.013) ( 0.043) ( 0.006) ( 0.004) ( 0.004) ( 0.004) ( 0.003)

%sig 5.7% 91.4% 65.7% 92.9% 68.6% 65.7% 45.7% 85.5% 55.1% 27.5% 17.4% 18.8% 14.5%

Np 70 70 70 70 70 70 70 69 69 69 69 69 69

Panel E: Manufacturing

MG 0.002 0.538 0.129 -0.169 0.424 0.121 0.049 0.580 0.019 -0.000 -0.002 -0.001 -0.002

( 0.002) ( 0.045) ( 0.024) ( 0.022) ( 0.026) ( 0.047) ( 0.013) ( 0.038) ( 0.004) ( 0.002) ( 0.002) ( 0.003) ( 0.002)

%sig 0.0% 89.4% 80.5% 66.4% 93.8% 81.4% 69.9% 91.6% 49.5% 20.6% 14.0% 27.1% 17.8%

Np 113 113 113 113 113 113 113 107 107 107 107 107 107

Panel F: Others

MG 0.007 0.634 0.288 -0.217 0.206 0.258 -0.050 0.418 0.013 -0.007 -0.010 -0.010 -0.000

( 0.005) ( 0.070) ( 0.043) ( 0.052) ( 0.046) ( 0.053) ( 0.021) ( 0.067) ( 0.006) ( 0.004) ( 0.004) ( 0.005) ( 0.004)

%sig 2.5% 90.0% 72.5% 72.5% 60.0% 80.0% 50.0% 85.0% 37.5% 27.5% 30.0% 25.0% 17.5%

Np 40 40 40 40 40 40 40 40 40 40 40 40 40

Table 3: QML estimation results of Spatial factor model with Fama-French five factors and the

momentum factor (Equation 30). Parameters summarized by industry.

6We need to interpret the mean group estimates of these spatial-temporal parameters with care. The individual parameters ψl,i,g

are quite dispersed for l ≥ 1, with some firms having significantly positive spatial-temporal terms and some having significantly

negative ones. That is why the mean group estimates for these spatial-temporal parameters may not look very statistically

significant, although high percentages of individual coefficients are significant — there is simply too much heterogeneity.
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(1) factor component (2) spatial-temporal component

α β1 β2 β3 β4 β5 β6 βI ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

Panel A: Finance

MG 0.010 0.298 -0.068 0.313 0.036 -0.055 -0.071 0.302 0.560 -0.041 -0.018 -0.013 -0.009 0.001

( 0.003) ( 0.063) ( 0.058) ( 0.054) ( 0.055) ( 0.048) ( 0.018) ( 0.062) ( 0.046) ( 0.010) ( 0.005) ( 0.005) ( 0.005) ( 0.004)

%sig 7.4% 89.7% 72.1% 88.2% 58.8% 54.4% 67.6% 66.2% 85.3% 75.0% 50.0% 39.7% 42.6% 33.8%

Np 68 68 68 68 68 68 68 68 68 68 68 68 68 68

Panel B: Consumer

MG 0.003 0.084 -0.195 -0.226 0.235 0.318 0.015 0.576 0.358 -0.010 -0.025 -0.014 -0.008 -0.008

( 0.003) ( 0.056) ( 0.028) ( 0.022) ( 0.024) ( 0.028) ( 0.012) ( 0.053) ( 0.037) ( 0.004) ( 0.004) ( 0.004) ( 0.004) ( 0.003)

%sig 4.0% 74.7% 70.7% 77.3% 74.7% 76.0% 52.0% 90.7% 81.3% 40.0% 38.7% 30.7% 28.0% 16.0%

Np 75 75 75 75 75 75 75 75 75 75 75 75 75 75

Panel C: Health

MG 0.011 0.280 -0.200 -0.262 0.116 0.228 0.071 0.361 0.305 -0.014 -0.022 0.000 -0.005 -0.004

( 0.007) ( 0.054) ( 0.039) ( 0.039) ( 0.040) ( 0.044) ( 0.022) ( 0.036) ( 0.059) ( 0.007) ( 0.004) ( 0.004) ( 0.005) ( 0.005)

%sig 10.7% 78.6% 67.9% 96.4% 42.9% 67.9% 64.3% 96.4% 92.9% 28.6% 14.3% 10.7% 7.1% 14.3%

Np 28 28 28 28 28 28 28 28 28 28 28 28 28 28

Panel D: Hi-tech

MG 0.017 0.628 0.147 -0.396 -0.301 0.261 -0.035 -0.002 0.410 0.006 -0.009 0.004 -0.004 0.007

( 0.004) ( 0.043) ( 0.040) ( 0.029) ( 0.049) ( 0.043) ( 0.013) ( 0.034) ( 0.041) ( 0.006) ( 0.004) ( 0.004) ( 0.004) ( 0.004)

%sig 7.1% 85.7% 64.3% 90.0% 72.9% 62.9% 40.0% 58.6% 84.1% 42.0% 27.5% 15.9% 18.8% 10.1%

Np 70 70 70 70 70 70 70 70 69 69 69 69 69 69

Panel E: Manufacturing

MG -0.002 -0.028 -0.246 -0.188 0.249 0.189 0.053 0.732 0.407 -0.014 -0.016 -0.012 -0.009 -0.002

( 0.002) ( 0.048) ( 0.029) ( 0.020) ( 0.020) ( 0.030) ( 0.011) ( 0.047) ( 0.036) ( 0.004) ( 0.003) ( 0.002) ( 0.003) ( 0.002)

%sig 6.2% 75.2% 81.4% 69.0% 76.1% 69.9% 54.9% 94.7% 87.9% 47.7% 40.2% 27.1% 29.0% 24.3%

Np 113 113 113 113 113 113 113 113 107 107 107 107 107 107

Panel F: Others

MG -0.000 0.299 0.031 -0.225 0.248 0.257 -0.019 0.376 0.432 -0.006 -0.017 -0.016 -0.014 -0.003

( 0.005) ( 0.086) ( 0.044) ( 0.050) ( 0.047) ( 0.053) ( 0.021) ( 0.054) ( 0.062) ( 0.006) ( 0.004) ( 0.004) ( 0.005) ( 0.004)

%sig 5.0% 72.5% 55.0% 75.0% 67.5% 77.5% 50.0% 75.0% 85.0% 22.5% 37.5% 35.0% 30.0% 17.5%

Np 40 40 40 40 40 40 40 40 40 40 40 40 40 40

Table 4: QML estimation results of spatial factor model with Fama-French five factors, the mo-

mentum factor, and the industry factor. Parameters summarized by industry.

Next, we examine how the spatial factor model captures the remaining dependence in the de-factored returns.

Using the method described in subsection 2.3, we compute the number of non-zero pair-wise cross correlations of

residuals from (1) Factor Model with FF5+MOM+IF that use Fama-French five factors, and momentum factor

+ 12 Industry factor, and (2) Spatial Factor Model with FF5+MOM+IF that use Fama-French five factors,

and momentum factor + 12 Industry factor. 7

To test H0,ij : ρij = 0 for ntest = N(N − 1)/2 pairs of (i, j), for a given family-wise error rate (FWER) p,

the critical values are ± 1√
T

Φ−1(1−p/2ntest) for the factor model, and F−1(p/2ntest) and F−1(1−p/2ntest) for

the spatial factor model. F is the empirical null distribution from B = 500 bootstrap samples. Figure 1 shows

the histogram of bootstrapped ρ̂bij for all i 6= j, b = 1, . . . , 500 for the spatial factor model. Table 5 presents

the degree of cross-sectional dependence in the factor model and its spatial-augmented version under different

family-wise error rates. First of all, bootstrap results show that the limiting distribution of ρ̂ij under the null

is indeed altered by the addition of the spatial term, and we need different critical values for testing. The table

shows that adding the spatial component reduces the number of non-zero pair-wise cross correlations by a huge

margin.8 The spatial component constructed with news-implied linkages is successful at eliminating correlations

from the de-factored returns.

7Here we only present the results for the models with most factors that are supposed to have least residual correlations among

all. We can do more different factor models and their spatial augmented versions, at the cost of bootstrap inference for each spatial

factor model.
8This is not only because we need larger critical values under the spatial factor specification. Even if we do not consider the

distortion brought by the spatial component and still use limiting distributions from factor model residual correlation coefficients,

the percentage of non-zero pair-wise cross correlations is still reduced by half.
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Critical values # Non-zero pair-wise cross correlations Density

(1) p = 0.05

Factor Model with FF5+MOM+IF -0.091,0.091 8516 5.50%

Spatial Factor Model with FF5+MOM+IF -0.243,0.245 416 0.27%

(2) p = 0.1

Factor Model with FF5+MOM+IF -0.088,0.088 9490 5.87%

Spatial Factor Model with FF5+MOM+IF -0.225,0.229 478 0.31%

Table 5: Degree of Cross-Sectional Dependence in the Residuals.

Note: Density gives the percentage of non-zero pair-wise cross correlations (i.e., density=number of non-zero

pair-wise cross-correlations/N(N-1)).

6.2 Model Performance: Degree of Mispricing

Next, we compare the performance of factor models with their spatial versions by several measures of the degree

of mispricing. We are interested in whether adding the spatial component to the factor model could reduce

mispricing.

If an asset pricing model completely captures expected returns, then the intercept α̃ is approximately zero.

We are dealing with a high-dimensional system. Testing H0 : α̃ = 0 for large N using traditional tests like

Gibbons et al. (1989) which are designed for cases where the number of test assets are small will have low

power problem. Also, this test for whether exact arbitrage pricing holds is stronger than what is implied by the

approximate no arbitrage condition (Equation 20 and Equation 21).

So instead of using standard GRS test, we employ other three statistics to compare the relative performance

of different models (1) the percentage of individually significant α̃i (Pesaran and Yamagata (2012)); (2) average

L1 norm of intercepts A(| α̃i |); (3) average L2 norm of intercepts A(α̃2
i ) (Fama and French (2015)). Those three

statistics are implied by theorem 1 and the corollaries to be useful in measuring how well the approximation

(Equation 20) is. In addition to those three measures of mispricing, we also report the mean-squared errors

(MSE) of different models.

We compare the relative performances of the following factor models, their spatial augmented versions.

• Model 1.1: CAPM model (CAPM)

• Model 1.2: CAPM model + Industry factor (CAPM+IF)

• Model 1.3: Spatial CAPM model (CAPM(S))

• Model 1.4: Spatial CAPM model + Industry factor (CPAM+IF(S))

• Model 2.1: Factor model with Fama-French three factors (FF3)

• Model 2.2: Factor model with Fama-French three factors + Industry factor (FF3+IF)

• Model 2.3: Spatial factor model with Fama-French three factors (FF3(S))

• Model 2.4: Spatial factor model with Fama-French three factors + Industry factor (FF3+IF(S))

• Model 3.1: Factor model with Fama-French five factors (FF5)
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• Model 3.2: Factor model with Fama-French five factors + Industry factor (FF5+IF)

• Model 3.3: Spatial factor model with Fama-French five factors (FF5(S))

• Model 3.4: Spatial factor model with Fama-French five factors + Industry factor (FF5+IF(S))

• Model 4.1: Factor model with Fama-French five factors, and momentum factor (FF5+MOM)

• Model 4.2: Factor model with Fama-French five factors, and momentum factor + Industry factor (FF5+MOM+IF)

• Model 4.3: Spatial factor model with Fama-French five factors, and momentum factor (FF5+MOM(S))

• Model 4.4: Spatial factor model with Fama-French five factors, and momentum factor + Industry factor

(FF5+MOM+IF(S))

% of significant α̃i A(| α̃i |) A(α̃2
i ) Mean-squared error (MSE)

Model 1.1: CAPM 7.61% 2.51 10.91 3.26

Model 1.2: CAPM+IF 7.61% 2.47 11.19 2.99

Model 1.3: CAPM(S) 9.13% 2.43 10.41 2.86

Model 1.4: CAPM+IF(S) 7.87% 2.36 10.41 2.73

Model 2.1: FF3 7.64% 2.49 10.66 3.26

Model 2.2: FF3+IF 7.35% 2.35 10.69 2.86

Model 2.3: FF3(S) 6.09% 2.31 9.39 2.75

Model 2.4: FF3+IF(S) 8.12% 2.28 9.90 2.65

Model 3.1: FF5 5.84% 2.45 11.17 2.99

Model 3.2: FF5+IF 6.60% 2.39 11.42 2.82

Model 3.3: FF5(S) 5.58% 2.21 9.39 2.72

Model 3.4: FF5+IF(S) 6.68% 2.24 9.90 2.62

Model 4.1: FF5+MOM 6.09% 2.49 11.18 2.97

Model 4.2: FF5+MOM+IF 6.35% 2.39 11.34 2.80

Model 4.3: FF5+MOM(S) 4.80% 2.18 9.14 2.70

Model 4.4: FF5+MOM+IF(S) 6.45% 2.19 9.64 2.61

Table 6: Summary of Model Performance.

Note: Each panel shows the performance statistics of a factor model, its spatial augmented version, and its

spatial and industry factor augmented version. Note: α̃ used to compute A(| α̃i |) and A(α̃2
i ) are in basis point,

and ε used to compute MSE errors are all in percentage point. For each column, the best statistic is highlighted

in red.

Table 6 shows that for all factor models except the CAPM, adding spatial interactions improves all per-

formance measures. Spatial CAPM fails to reduce the percentage of individually significant intercepts. This

is because spatial models are designed for modelling local interactions. If there are not enough common risk

factors to capture the strong dependence in equity returns, adding the spatial component which deals with

weak dependence is not going to be helpful. For factor models with Fama-French three-factor, five-factor, and

five-factor plus momentum factor, adding spatial interactions all provides noticeable improvement on reducing
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the mispricing component and mean squared errors. Interestingly, although adding the industry factor can

further reduce mean-squared error, it cannot help to reduce the mispricing 9.

For each measure, the best-performing statistic is highlighted in red. Model 4.3, the spatial factor model

with Fama-French five factors, and momentum factor appears to have the best performance in terms of reducing

pricing errors. And model 4.4, which is model 4.3 with the industry factor, has the smallest mean-squared errors.

6.3 Comparisons with alternative networks

In this section, we gauge whether the news-implied links carry additional information on top of existing linkage

datasets. We first show that spatial factor models estimated with W constructed using other existing linkage

datasets under-perform that estimated with news-implied W . We then show that conditional on other existing

linkages, local risk spillovers via our news-implied links continue to be significant.

We consider the following competing networks:

• Industry-based adjacency matrices based on industry classification of different granularities including 4-

digit SIC codes, 3-digit SIC codes, and 2-digit SIC codes classifications. This is motivated by Moskowitz

and Grinblatt (1999), Engelberg et al. (2018) and Fan et al. (2016). For each classification criteria, we

build block-diagonal matrices where companies within the same industry are fully connected.

• IBES analyst co-coverage networks. It has been documented that shared analyst coverage is a strong

proxy for fundamental linkages between firms and reflects firm similarities along many dimensions (Ali

and Hirshleifer (2020), Israelsen (2016), Kaustia and Rantala (2013)). We use the Institutional Brokers

Estimate System (IBES) detail history files to construct the analyst co-coverage-based adjacency matrix.

For each year in the sample, we consider a stock is covered by an analyst if the analyst issues at least one

FY1 or FY2 earnings forecast for the stock during the year. And we consider two stocks as linked if there

are common analysts during the year, weighted by the number of common analysts. We then add up the

yearly adjacency matrices to get the full sample adjacency matrix.

• Customer-supplier links (Cohen and Frazzini (2008)) from Andrea Frazzini’s data library. The strength

of links is weighted by sales.

• Geographic links (Pirinsky and Wang (2006) and Parsons et al. (2020)). We obtain location information

from CRSP Compustat merged files. We then merge the sample firms with the Metropolitan Statistical

Areas (MSA) data using the ZIP-FIPS-MSA data from the US Department of Labor, which maps zip

codes to MSAs. We follow Pirinsky and Wang (2006), and consider firms whose headquarters are in the

same MSA as linked.

• The union of above mentioned links. We let a typical entry wij in this matrix to be one if the pair (i, j)

is linked in any of the above networks, and zero otherwise.

9In unreported tables, if we replace equal-weighted industry portfolios with value-weighted industry portfolios, the introduction

of industry factor does further bring down three statistics of mispricing. And model 4.4, the spatial factor model with Fama-French

five factors, and momentum factor plus Industry factor has the best performance in all dimensions. However, as we have argued

earlier, value-weighted portfolios might cause endogeneity issues given we are working with large companies. Using other equal

weighting industry factors does not change the results.
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Table 7 shows the performance of competing networks. Individually, spatial APT models estimated with

new-implied linkages out-perform other existing networks. And even if we consider the union of all alternative

networks, the news-implied network still does not lose the battle. For the four statistics that we consider,

spatial factor model with Fama-French five factors and momentum factor estimated using Wnews (last line

of panel (1)) performs the best among all candidates along two dimensions. Spatial factor model with Fama-

French five factors, momentum factor, and industry factor estimated using Wunion (second last line of panel (2))

also performs the best among all candidates along two dimensions. Models with adjacency matrices capturing

multiple channels out-perform those with adjacency matrices focusing on one particular channel. This seems

to support the fact that there are multiple channels of local risk spillovers. There is no reason to focus on

one particular channel like intra-industry channel, customer-supplier channel, etc. Our news-implied linkages

provide a comprehensive and integrated measure of firm-level relatedness, and it can be seen as a nice proxy of

firm-to-firm connectivity.

% of significant α̃i A(| α̃i |) A(α̃2
i ) Mean-squared error (MSE)

Panel (1): Spatial factor model with Fama-French five factors, and momentum factor

W2−digit−SIC 7.61% 2.22 9.64 2.68

W3−digit−SIC 6.85% 2.37 10.91 2.82

W4−digit−SIC 6.35% 2.40 11.68 2.88

WIBES 6.85% 2.29 9.90 2.73

WCustomer−Supplier 6.09% 2.48 11.17 2.96

WGeographic 7.11% 2.67 12.44 2.97

WUnion 6.09% 2.17 9.14 2.64

WNews 4.80% 2.18 9.14 2.70

Panel (2): Spatial factor model with Fama-French five factors, and momentum factor + Industry factor

W2−digit−SIC 6.09% 2.23 10.14 2.65

W3−digit−SIC 5.58% 2.31 10.91 2.77

W4−digit−SIC 5.58% 2.35 11.93 2.83

WIBES 6.09% 2.22 9.90 2.68

WCustomer−Supplier 6.85% 2.39 11.17 2.81

WGeographic 6.60% 2.45 11.93 2.81

WUnion 5.83% 2.16 9.39 2.61

WNews 6.45% 2.19 9.64 2.61

Table 7: Summary of Model Performance using competing networks.

Note: Panel (1) shows the performance of competing adjacency matrices under the spatial factor model with

Fama-French five factors, and momentum factor. Panel (2) shows the performance of competing adjacency

matrices under the spatial factor model with Fama-French five factors, and momentum factor plus industry

factor. α̃ used to compute A(| α̃i |) and A(α̃2
i ) are in basis point, and ε used to compute MSE errors are all in

percentage point. For each column, the best statistic is highlighted in red.

Next, we examine that whether our news-implied linkages carry new information on top of existing linkages

documented? To do that, we estimate the two-W spatial factor models below, with W1 being our news-implied
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networks and W2 being a set of other candidate matrices

r̃t = α̃+ Bf̃t +

L∑
l=0

Ψ1,lW1r̃t−l +

L∑
l=0

Ψ2,lW2r̃t−l + εt. (36)

r̃t = α̃+ Bf̃t + βIfIND,t +

L∑
l=0

Ψ1,lW1r̃t−l +

L∑
l=0

Ψ2,lW2r̃t−l + εt. (37)

(1) W1 (2) W2

ψ1,0 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ1,5 ψ2,0 ψ2,1 ψ2,2 ψ2,3 ψ2,4 ψ2,5

Panel(1): W1 = Wnews and W2 = W2−digit−SIC

MG 0.299 0.005 -0.002 0.001 0.001 0.000 0.309 -0.000 -0.005 -0.004 -0.002 0.001

( 0.017) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.020) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003)

%sig 75.2% 32.3% 19.6% 21.2% 20.2% 19.6% 82.8% 27.1% 16.4% 18.3% 18.8% 17.8%

Np 387 387 387 387 387 387 377 377 377 377 377 377

Panel(2): W1 = Wnews and W2 = W3−digit−SIC

MG 0.296 0.007 -0.003 -0.000 -0.002 -0.001 0.271 0.000 -0.003 -0.003 0.001 0.002

( 0.019) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.026) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003)

%sig 75.5% 35.9% 19.9% 20.9% 25.3% 17.8% 83.4% 26.8% 19.0% 17.5% 17.8% 15.1%

Np 387 387 387 387 387 387 332 332 332 332 332 332

Panel(3): W1 = Wnews and W2 = W4−digit−SIC

MG 0.318 0.010 -0.003 -0.000 -0.003 0.000 0.264 -0.002 -0.004 -0.002 0.002 0.002

( 0.019) ( 0.004) ( 0.003) ( 0.002) ( 0.003) ( 0.003) ( 0.029) ( 0.005) ( 0.003) ( 0.003) ( 0.003) ( 0.003)

%sig 75.2% 39.3% 19.9% 20.7% 24.3% 19.6% 81.6% 26.7% 18.8% 17.7% 17.7% 16.3%

Np 387 387 387 387 387 387 288 288 288 288 288 288

Panel(4): W1 = Wnews and W2 = WIBES

MG 0.365 0.004 -0.005 -0.001 -0.003 -0.001 0.197 0.001 -0.001 -0.002 0.000 0.003

( 0.019) ( 0.004) ( 0.002) ( 0.003) ( 0.003) ( 0.002) ( 0.014) ( 0.003) ( 0.002) ( 0.002) ( 0.003) ( 0.002)

%sig 83.5% 39.8% 20.9% 19.1% 22.5% 19.4% 80.0% 26.2% 16.8% 17.6% 15.6% 17.6%

Np 387 387 387 387 387 387 340 340 340 340 340 340

Panel(5): W1 = Wnews and W2 = WCustomer−Supplier

MG 0.483 0.006 -0.007 -0.001 -0.003 0.001 0.082 0.005 -0.004 -0.003 0.008 0.003

( 0.019) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001) ( 0.021) ( 0.004) ( 0.004) ( 0.004) ( 0.005) ( 0.004)

%sig 87.1% 50.6% 26.1% 23.3% 27.1% 17.6% 69.5% 13.6% 11.9% 11.9% 10.2% 13.6%

Np 387 387 387 387 387 387 59 59 59 59 59 59

Panel(6): W1 = Wnews and W2 = WGeographic

MG 0.459 0.006 -0.006 0.002 -0.000 0.001 0.093 -0.002 -0.001 -0.005 -0.005 0.001

( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.002) ( 0.019) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.003)

%sig 86.3% 36.7% 21.7% 19.9% 21.2% 15.8% 59.9% 22.5% 18.2% 12.1% 14.0% 13.4%

Np 387 387 387 387 387 387 307 307 307 307 307 307

Panel(7): W1 = Wnews and W2 = WUnion

MG 0.305 0.007 -0.001 0.003 0.003 -0.000 0.374 -0.004 -0.005 -0.005 -0.005 0.001

( 0.016) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.020) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003)

%sig 75.5% 26.6% 17.8% 20.2% 18.9% 16.3% 83.8% 23.6% 17.3% 18.3% 17.0% 17.5%

Np 387 387 387 387 387 387 394 394 394 394 394 394

Table 8: QML estimation results of two-W spatial factor model with Fama-French five factors,

and the Momentum factor (Equation 36).

Note: we only report spatial parameters here. Wnews is constructed using threshold m = 1.

22

Electronic copy available at: https://ssrn.com/abstract=3827902



(1) W1 (2) W2

ψ1,0 ψ1,1 ψ1,2 ψ1,3 ψ1,4 ψ1,5 ψ2,0 ψ2,1 ψ2,2 ψ2,3 ψ2,4 ψ2,5

Panel(1): W1 = Wnews and W2 = W2−digit−SIC

MG 0.280 -0.002 -0.007 -0.003 -0.003 -0.001 0.240 -0.011 -0.009 -0.007 -0.004 -0.001

( 0.017) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.019) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003)

%sig74.7% 26.9% 21.2% 22.7% 21.2% 21.2% 82.0% 28.9% 15.4% 18.6% 17.8% 18.3%

Np 387 387 387 387 387 387 377 377 377 377 377 377

Panel(2): W1 = Wnews and W2 = W3−digit−SIC

MG 0.267 -0.004 -0.011 -0.006 -0.006 -0.003 0.228 -0.007 -0.005 -0.004 -0.001 0.001

( 0.018) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.025) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003)

%sig72.4% 31.3% 24.0% 24.8% 22.7% 18.1% 80.4% 28.3% 19.3% 18.1% 16.0% 16.0%

Np 387 387 387 387 387 387 332 332 332 332 332 332

Panel(3): W1 = Wnews and W2 = W4−digit−SIC

MG 0.282 -0.003 -0.010 -0.007 -0.007 -0.002 0.222 -0.010 -0.006 -0.003 0.000 0.001

( 0.018) ( 0.004) ( 0.003) ( 0.002) ( 0.003) ( 0.003) ( 0.028) ( 0.005) ( 0.003) ( 0.003) ( 0.003) ( 0.003)

%sig71.3% 31.8% 25.3% 24.3% 22.0% 19.4% 78.8% 29.5% 20.1% 18.1% 18.1% 17.0%

Np 387 387 387 387 387 387 288 288 288 288 288 288

Panel(4): W1 = Wnews and W2 = WIBES

MG 0.318 -0.007 -0.013 -0.007 -0.006 -0.002 0.160 -0.006 -0.004 -0.003 -0.002 0.002

( 0.018) ( 0.004) ( 0.002) ( 0.003) ( 0.003) ( 0.002) ( 0.015) ( 0.003) ( 0.002) ( 0.002) ( 0.003) ( 0.002)

%sig79.6% 36.2% 23.8% 20.9% 22.2% 19.4% 79.7% 27.6% 17.1% 17.6% 15.9% 19.1%

Np 387 387 387 387 387 387 340 340 340 340 340 340

Panel(5): W1 = Wnews and W2 = WCustomer−Supplier

MG 0.418 -0.014 -0.017 -0.009 -0.008 -0.001 0.053 0.002 -0.002 -0.004 0.005 0.002

( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001) ( 0.014) ( 0.004) ( 0.004) ( 0.004) ( 0.005) ( 0.004)

%sig84.2% 45.0% 37.2% 27.1% 27.4% 18.9% 71.2% 15.3% 13.6% 11.9% 6.8% 15.3%

Np 387 387 387 387 387 387 59 59 59 59 59 59

Panel(6): W1 = Wnews and W2 = WGeographic

MG 0.399 -0.007 -0.014 -0.003 -0.004 -0.001 0.074 -0.009 -0.005 -0.008 -0.008 -0.000

( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.002) ( 0.016) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.003)

%sig83.7% 33.6% 24.8% 23.5% 21.4% 16.5% 59.3% 25.7% 19.2% 13.0% 12.7% 14.3%

Np 387 387 387 387 387 387 307 307 307 307 307 307

Panel(7): W1 = Wnews and W2 = WUnion

MG 0.292 0.002 -0.006 -0.000 0.001 -0.001 0.305 -0.016 -0.010 -0.010 -0.009 -0.001

( 0.016) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003) ( 0.018) ( 0.004) ( 0.003) ( 0.003) ( 0.003) ( 0.003)

%sig76.0% 25.6% 18.1% 18.9% 19.4% 17.1% 83.0% 25.4% 17.5% 18.8% 17.0% 18.0%

Np 387 387 387 387 387 387 394 394 394 394 394 394

Table 9: QML estimation results of two-W spatial factor model with Fama-French five factors, the

momentum factor, and the industry factor (Equation 37).

Note: we only report spatial parameters here. Wnews is constructed using threshold m = 1.

Table 8 and Table 9 shows the estimation results for Equation 36 and Equation 37, respectively. Although

the magnitude of local dependencies among news-implied peers is weakened by the introduction of other net-

works, our new-implied links are still important channels of risk spillovers. The mean group (MG) estimates of

ψ1,0 are around 0.27 − 0.48, with more than 70% of parameters being individually significant across different

specifications.

Even if we condition on the union of all alternative linkages (i.e., W2 = Wunion), the magnitude of local

dependencies among news-implied peers is still quite large. For the specification without industry factor, average

ψ2,0 is larger than average ψ1,0. However, the introduction of industry factor reduces ψ̂MG
2,0 while leaving ψ̂MG

1,0

unchanged, making the local spillover effect via news-implied network equally strong as the effect via the union

of all other alternative networks. The results confirm that the novel dataset carries additional information on top

of existing networks. The statistically and economically significant local dependencies among the news-implied
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peers cannot be explained by other existing networks.

7 Conclusion

This paper studies a heterogeneous coefficient spatial factor model, which addresses both strong cross-sectional

dependence and a very flexible form of weak cross-sectional dependence in equity returns. Theoretically, it

extends classical asset pricing models like CAPM and APT, which only consider the strong form of cross-

sectional dependence. We characterize how local dependence affects asset returns under the assumption of no

asymptotic arbitrage. Empirically, we focus on the weak/local dependency in equity returns, which is an area

less explored in empirical financial studies due to data availability issues. Utilizing the novel business news-

implied linkage data, we construct the channels through which the local shocks transmit. We adopt a flexible

heterogeneous coefficient spatial-temporal model, and we find that stocks linked via business news co-mentioning

exhibit excess co-movement beyond that is predicted by standard asset pricing models like CAPM and APT.

Exposures to common risk factors and local interactions are two distinct mechanism that jointly explain the

co-movement in asset returns. It is important for investors and policy makers to separately analyse the two

types of dependencies to fully understand what type of risk are they exposed to.

One interesting question for future work is whether the spatial factor model can be applied for portfolio

construction problem. With the presence of both factor-driven strong dependence and the remaining weak

dependence, literature on high-dimensional equity returns covariance matrix usually consider the following

estimator

Σ̂y = B̂ ˆcov(f)tB̂
′ + Σ̂ε, (38)

where Σ̂ε is a regularised sparse error covariance matrix, and the estimation of Σy is achieved in two steps. The

spatial factor model we study in this paper implies the following covariance structure

(39)

which can be estimated in a single step.

Another interesting future work is the formal testing of no arbitrage H0 : α = 0 for the spatial factor model

when N is large. Pesaran and Yamagata (2012), Pesaran and Yamagata (2017) consider testing for alpha in

factor models with large N , how to extend the theory is non-trivial and needs thorough analysis.
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Appendices

A Proofs of Theorems and Corollaries

A.1 Proof of Theorem 1

This proof is heavily borrowed from Kou et al. (2018) and Ingersoll Jr (1984). Under Assumption 3, (I−ΨW ) is

invertible and we denote the inverse as G(ψ) = (I −ΨW )−1. We rewrite the spatial factor model (Equation 7)

as

r = Gα+GBf +Gε. (40)

We let

α̇ = Gα, Ḃ = GB, ε̇ = Gε. (41)

The spatial factor model can be written as a reduced-form factor model

r = α̇+ Ḃf + ε̇. (42)

In particular, the covariance matrix of the reduced form error is

Ω̇ = E(ε̇ε̇′) = GΩG′. (43)

We follow Ingersoll Jr (1984), and factor the positive definite covariance matrix Ω̇ as Ω̇ = CC ′, where C is

a nonsingular matrix. Now consider a subsequences of assets. For the nth economy, consider the orthogonal

projection of the vector (Cn)−1α̇n into the space spanned by (Cn)−11n and the columns of (Cn)−1Ḃn as follows:

(Cn)−1α̇n = (Cn)−11nλn0 + (Cn)−1Ḃnλn + un. (44)

By the nature of orthogonal projection,

0 = (Ḃn)′((Cn)′)−1un = (1n)′((Cn)′)−1un. (45)

Given the pricing error vn we defined in Equation 16, the reduced form pricing error from the reduced form

factor model Equation 42 is v̇n = Gvn

v̇n = α̇n − 1nλn0 − Ḃnλn = Gn(αn − (Gn)−11nλn0 −Bnλn) = Gnvn. (46)

The reduced form pricing error v̇n can be written as v̇n = Cnun directly from Equation 55. Using the orthogonal

conditions Equation 56 and the factorization Ω̇n = Cn(Cn)′, we have:

(Ḃn)′(Ω̇n)−1v̇n = (1n)′(Ω̇n)−1v̇n = 0. (47)

Consider a zero cost portfolio cn = (Ω̇n)−1v̇n[(v̇n)′(Ω̇n)−1v̇n]−1

(1n)′cn = (1n)′(Ω̇n)−1v̇n[(v̇n)′(Ω̇n)−1v̇n]−1 = 0, (48)

with expected return

E((cn)′rn) = (cn)′α̇n = [(v̇n)′(Ω̇n)−1v̇n]−1(v̇n)′(Ω̇n)−1(1nλn0 + Ḃnλn + v̇n) = 1, (49)
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and variance

V ar((cn)′rn) = (cn)′V ar(rn)cn

= [(v̇n)′(Ω̇n)−1v̇n]−1(v̇n)′(Ω̇n)−1(Ḃn(Ḃn)′ + Ω̇n)(Ω̇n)−1v̇n[(v̇n)′(Ω̇n)−1v̇n]−1

= [(v̇n)′(Ω̇n)−1v̇n]−1 = [(Gnvn)′(GnΩn(Gn)′)−1Gnvn]−1

= [(vn)′(Ωn)−1(vn)]−1

(50)

If the weighted sum of squared pricing errors (vn)′(Ωn)−1(vn) is not uniformly bounded (i.e., Equation 17 is

violated), then the variance of this portfolio would go to zero along some subsequence, and the asymptotic

arbitrage opportunity described in Equation 14 exists.

A.2 Proof Corollary 1.1

This is a direct result of Theorem 3 from Chamberlain and Rothschild (1983).

A.3 Proof Corollary 1.2

Again, we look at the reduced form factor model

r = α̇+ Ḃf + ε̇, (51)

where

α̇ = Gα, Ḃ = GB, ε̇ = Gε. (52)

Ω̇ = E(ε̇ε̇′) = GΩG′. (53)

The risk factors are given by

fk = f̃k − E(f̃k) for k = 1, . . . ,K. (54)

We factor the positive definite covariance matrix Ω̇ as Ω̇ = CC ′, where C is a nonsingular matrix. Now consider a

subsequences of assets. For the nth economy, consider the orthogonal projection of the vector (Cn)−1(α̇n−rf1n)

onto the space spanned by columns of (Cn)−1Ḃn as follows:

(Cn)−1(α̇n − rf1n) = (Cn)−1Ḃnλn + un. (55)

By the nature of orthogonal projection,

(Ḃn)′((Cn)′)−1un = 0. (56)

We define

vn = αn − rf (In −ΨnWn)1n −BnE(f̃) = αn − rf (Gn)−11n −BnE(f̃). (57)

Define the the reduced form pricing error

v̇n = α̇n − rf1n − Ḃnλn. (58)

Under the assumption that factors are traded, λn = E(f̃). And we have v̇n = Gnvn as:

v̇n = α̇n − rf1n − Ḃnλn = Gn(αn − rf (Gn)−11n −BnE(f̃)) = Gnvn. (59)
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Given there exists risk free asset, consider a zero-cost portfolio which take a long position cn in the risky

assets and short position (cn)′1n in the risk free asset, where cn = (Ω̇n)−1v̇n[(v̇n)′(Ω̇n)−1v̇n]−1. This portfolio

generates expected return

E((cn)′(rn − rf1n))

= E((cn)′(α̇n − rf1n)) + E((cn)′Ḃnf) + E((cn)′ε̇n)

= E((cn)′(α̇n − rf1n)) = E((cn)′(Ḃnλn + v̇n))

= [(v̇n)′(Ω̇n)−1v̇n]−1(v̇n)′(Ω̇n)−1v̇n = 1,

(60)

and variance

V ar((cn)′(rn − rf1n))

= (cn)′V ar(Ḃnf + ε̇n)cn

= [(v̇n)′(Ω̇n)−1v̇n]−1(v̇n)′(Ω̇n)−1(Ḃn(Ḃn)′ + Ω̇n)(Ω̇n)−1v̇n[(v̇n)′(Ω̇n)−1v̇n]−1

= [(v̇n)′(Ω̇n)−1v̇n]−1 = [(Gnvn)′(GnΩn(Gn)′)−1Gnvn]−1

= [(vn)′(Ωn)−1(vn)]−1

(61)

For pricing errors vn = αn−rf (In−ΨnWn)1n−BnE(f̃) defined in Equation 57, if the weighted sum of squared

pricing errors (vn)′(Ωn)−1(vn) is not uniformly bounded (i.e., Equation 17 is violated), then the variance of

this portfolio would go to zero along some subsequence, and the asymptotic arbitrage opportunity described in

Equation 14 exists.

When there exists risk free rate rf , and if we write the risk factor fk before de-meaning as f̃k, then the

spatial factor model (Equation 7) can be written as:

r̃ = α̃+ Bf̃ + ΨW r̃ + ε,

where r̃ = r − rf1 is the vector of excess returns,

f̃ = (f̃1, . . . , f̃K)′,

α̃ = α− (I −ΨW )1rf −BE(f̃).

(62)

Comparing this pricing errors vn = αn − rf (In −ΨnWn)1n −BnE(f̃) with Equation 62, we can tell vn = α̃n,

and the asymptotic no arbitrage condition is equivalent to

α̃n ≈ 0. (63)

Comparing vn = α̃n = αn − rf (In −ΨnWn)1n −BnE(f̃) with Equation 16, we can tell

λn0 = rf ,

λn = E(f̃).
(64)

A.4 Proof Corollary 1.3

We first rewrite the spatial-factor model with the dependent variable being the excesss returns (Equation 62)

as

(I −ΨW )r̃ = G−1r̃ = α̃+ Bf̃ + ε. (65)
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Suppose the asset returns from an infinite economy are generated by:

(Gn)−1r̃n = α̃n + Bnf̃ + εn (66)

For any fixed δ > 0, assume I(| α̃nj |> δ) = 1 for j = 1, . . . , N(n, δ). For each of those N(n, δ) elements, we can

construct a zero cost portfolio as following way.

Take the jth element for example. Denote the jth column of Identify matrix In by ej . If α̃nj > δ, consider

a zero-cost portfolio which takes a long position e′j(G
n)−1 in excess returns r̃n, and short position e′jB

n in the

zero-cost traded factors f̃ . If α̃nj < −δ, consider a zero-cost portfolio which takes a short position e′j(G
n)−1

in excess returns r̃n, and long position e′jB
n in the zero-cost traded factors f̃ . The portfolio is a zero-cost

one because the long and short position are both zero-cost. The portfolio has expected return | α̃nj |> δ, and

variance σ2
j < σ̄2.

We can construct N(n, δ) such portfolios. Consider a new portfolio that takes equal weight in these N(n, δ)

portfolios. This new portfolio is zero-cost, with expected return
∑N(n,δ)
j=1 |α̃nj |
N(n,δ) > δ > 0. For uncorrelated errors,

the variance of this portfolio is smaller than σ̄2

N(n,δ) . If Equation 23 fails, and N(n, δ) is diverging, then we have

asymptotic arbitrage.

B Identification and Inference of the Heterogeneous Spatial-Temporal

Model

Aquaro et al. (2020) studies the conditions under which θ0 is identified, and establishes consistency and asymp-

totic normality of the estimator. Write the (N ∗(K+L+3)) by 1 vector θ = (α̃′,β′1, . . . ,β
′
K ,ψ

′
0, . . . ,ψ

′
L,σ

′
ε2)′ =

(b′,ψ′0,σ
′
ε2)′, where b = (α̃′,β′1, . . . ,β

′
K ,ψ

′
1 . . . ,ψ

′
L)′ is a (N ∗ (K + L + 1)) by 1 vector that contains all the

parameters associated with weakly exogenous variables xt. The following assumptions are made:

Assumption 5 The parameter vector θ = (b′,ψ′0,σ
′
ε2)′ belongs to Θ = Θb×Θψ0

×Θσ ⊂ RN∗(K+L+1)×RN ×

RN , a subset of the (N ∗ (K + L + 3)) dimensional Euclidean space RN∗(K+L+3). Θ is a closed and bounded

(compact) set, and θ0 is an interior point of Θ.

Assumption 6 The error terms {εit, i = 1, . . . , N ; t = 1, . . . , T} are independently distributed over i and t. For

filtration Ft = (xt,xt−1,xt−2, ...), E(εit | Ft) = 0, E(ε2it | Ft) = σ2
i0, for i = 1, . . . , N , so there is no conditional

heteroskedasticity. infiσ
2
i0 > c > 0 and supiσ

2
i0 < σ̄2 <∞, and E(| εit |p| Ft) = E((| εit |p) = ω̄ip < c̄, for all i

and t, where 1 ≤ p ≤ 4 + ε, for some ε > 0.

Assumption 7 (a) xt are stationary processes, that satisfy the moment condition supi,t,lE(| xit,l |2+g) < c̄,

for some g > 0, i = 1, . . . , N, t = 1, . . . , T, l = 1, . . . , (K + L+ 1).

(b) E(xtx
′
t) = Σxx, where entry Σij = E(xitx

′
jt) exists for all i and j, such as supi,j‖Σij‖ < c̄, and Σii is a

k × k non-singular matrix with infi[λmin(Σii)] > c > 0, and supi[λmin(Σii)] < c̄ <∞.

(c) 1
T

∑T
t=1 xtx

′
t
a.s−−→ Σxx as T →∞.

Assumption 8 (a) The adjacency matrix W is known, with zeros on the diagonal.
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(b) The adjacency matrix W has bounded row sum norm, and ‖W‖∞ < c <∞, and

sup
ψi∈Θψ

| ψi |<
1

‖W‖∞
. (67)

Definition 1 The set Nc(σ2
0) in the closed neighbourhood of σ2

0 if:

Nc(σ2
0) = {σ2

0 ∈ Θσ, | σ2
i0/σ

2
i − 1 |< ci, for i = 1, . . . , N}, (68)

for some ci > 0, where Θσ is a compact subset of RN .

Assumption 9 The (N ∗ (K + L+ 3)) by 1 vector θ = (b′,ψ′0,σ
′
ε2)′ belongs to Θc = Θb ×Θψ0

×Nc(σ2
0). Θb

and Θψ0
are compact subsets of RN∗(K+L+1) and RN , respectively, and Nc(σ2

0) is defined in definition 1, and

Θc is a subset of the (N ∗ (K + L+ 3)) dimensional Euclidean space, RN∗(K+L+3).

The identification results are given by the following proposition:

Proposition 2 Suppose that Assumptions 1-5 hold, consider a heterogeneous coefficient spatial-temporal model

given by Equation 25 and log-likelihood function given by Equation 26. For fixed N , K and L, the (N∗(K+L+3))

dimensional true parameter vector θ0 is almost surely locally identified on Θc.

The main inference results are given by the following proposition:

Proposition 3 Suppose that Assumptions 1-5 hold, consider a heterogeneous coefficient spatial-temporal model

given by Equation 25. For fixed N , K and L, the (N ∗(K+L+3)) dimensional QML estimator of θ0 is denoted

as θ̂QMLE, which is almost surely locally consistent for θ0 on Θc, and has the following asymptotic distribution:

√
T (θ̂QMLE − θ0)

d−→ N(0,V θ), (69)

where V θ is the asymptotic covariance matrix, which has a standard sandwich form:

V θ = H−1(θ0)J(θ0, γ)H−1(θ0), (70)

where H(θ0) = limT→∞E0(− 1
T
∂2`T (θ)
∂θ∂θ′ ) is the Hessian, and J(θ0, γ) is the asymptotic variance of the score,

which depends on the distribution of the errors. In the case of Gaussian errors, γ = 2, and H(θ0) = J(θ0, 2).

Remark: theorem 2 and theorem 3 describe the identification results and asymptotic distribution for each in-

dividual parameter in the (N ∗ (K + L + 3)) by 1 vector. When T → ∞, estimation and inference can be

conducted for any N .
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C Supplementary Figures and Tables

Number of unique news stories 88, 316, 898

Number of stories remaining after removing topics including

analyst recommendations, ratings changes, and index movements
87, 841, 641

Of these:

Number of stories tag sample companies 8, 341, 848

Of these:

Number of stories that mention only one company 5, 507, 772 (66.03%)

Number of stories that mention exactly two companies 1, 637, 256 (19.63%)

Number of stories that mention more than two companies 1, 196, 820 (14.34%)

Table 10: Descriptive statistics for RavenPack Equity files Dow Jones Edition for the period January 2004 to

December 2015.

Number of yearly window a pair gets identified Frequency Percentage Cumulative Percentage

0 217024 72.80% 72.80%

1 40178 13.48% 86.28%

2 13302 4.46% 90.74%

3 7116 2.39% 93.13%

4 4522 1.52% 94.65%

5 3236 1.09% 95.74%

6 2506 . 0.84% 96.58%

7 2022 0.68% 97.26%

8 1804 0.61% 97.87%

9 1508 0.51% 98.38%

10 1350 0.45% 98.83%

11 1232 0.41% 99.24%

12 2316 0.78% 100%

Table 11: Frequency distribution table of the number of yearly link identification windows that a pair gets

identified as economic neighbours for all possible pairs (i, j) in our sample. Note: A pair identified in k yearly

windows could get multiple co-mentions within each window.
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Finance Durbs Energy Hi-tec Health Manuf Nondur Other Shops Tel Utilities

Finance 1840 81 256 777 315 529 273 573 568 116 235

0.33 0.01 0.05 0.14 0.06 0.10 0.05 0.10 0.10 0.02 0.04

Durbs 81 12 14 67 16 72 27 49 45 10 13

0.20 0.03 0.03 0.17 0.04 0.18 0.07 0.12 0.11 0.02 0.03

Energy 256 14 372 147 42 115 51 153 83 20 172

0.18 0.01 0.26 0.10 0.03 0.08 0.04 0.11 0.06 0.01 0.12

Hi-tec 777 67 147 1376 227 419 182 439 403 126 86

0.18 0.02 0.03 0.32 0.05 0.10 0.04 0.10 0.09 0.03 0.02

Health 315 16 42 227 370 111 71 134 143 28 19

0.21 0.01 0.03 0.15 0.25 0.08 0.05 0.09 0.10 0.02 0.01

Manuf 529 72 115 419 111 470 134 287 211 43 62

0.220 0.03 0.05 0.17 0.05 0.19 0.05 0.12 0.09 0.02 0.03

Nondur 273 27 51 182 71 134 196 152 244 42 25

0.20 0.02 0.04 0.13 0.05 0.10 0.14 0.11 0.17 0.03 0.02

Other 573 49 153 439 134 287 152 344 295 63 138

0.22 0.02 0.06 0.17 0.05 0.11 0.06 0.13 0.11 0.02 0.05

Shops 568 45 83 403 143 211 244 295 698 73 40

0.20 0.02 0.03 0.14 0.05 0.08 0.09 0.11 0.25 0.03 0.01

Telcm 116 10 20 126 28 43 42 63 73 18 22

0.21 0.02 0.04 0.22 0.05 0.08 0.07 0.11 0.13 0.03 0.04

Utilities 235 13 172 86 19 62 25 138 40 22 366

0.20 0.01 0.15 0.07 0.02 0.05 0.02 0.12 0.03 0.02 0.31

Table 12: Links aggregated at industry level. Note: The adjacency matrix is construct using threshold

m = 1. we use Fama-French 12 industry classification. For each panel, the first row gives the number of intra

or inter industry pairs indentified, and the second gives the proportion to total number of links firms in that

industry have.
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Finance Durbs Energy Hi-tec Health Manuf Nondur Other Shops Tel Utilities

Finance 1496 65 193 566 233 377 193 451 397 84 173

0.35 0.02 0.05 0.13 0.06 0.09 0.05 0.11 0.09 0.02 0.04

Durbs 65 12 8 41 8 43 14 36 29 8 7

0.24 0.04 0.03 0.15 0.03 0.16 0.05 0.13 0.11 0.03 0.03

Energy 193 8 294 87 18 61 29 95 44 11 110

0.20 0.01 0.31 0.09 0.02 0.06 0.03 0.10 0.05 0.01 0.12

Hi-tec 566 41 87 1040 123 254 103 311 254 85 40

0.19 0.01 0.03 0.36 0.04 0.09 0.04 0.11 0.09 0.03 0.01

Health 233 8 18 123 288 64 40 86 75 17 4

0.24 0.01 0.02 0.13 0.30 0.07 0.04 0.09 0.08 0.02 0

Manuf 377 43 61 254 64 264 84 205 109 26 20

0.25 0.03 0.04 0.17 0.04 0.18 0.06 0.14 0.07 0.02 0.01

Nondur 193 14 29 103 40 84 144 97 158 30 12

0.21 0.02 0.03 0.11 0.04 0.09 0.16 0.11 0.17 0.03 0.01

Other 451 36 95 311 86 205 97 256 177 52 84

0.24 0.02 0.05 0.17 0.05 0.11 0.05 0.14 0.10 0.03 0.05

Shops 397 29 44 254 75 109 158 177 536 48 19

0.22 0.02 0.02 0.14 0.04 0.06 0.09 0.10 0.29 0.03 0.01

Telcm 84 8 11 85 17 26 30 52 48 18 13

0.21 0.02 0.03 0.22 0.04 0.07 0.08 0.13 0.12 0.05 0.03

Utilities 173 7 110 40 4 20 12 84 19 13 290

0.22 0.01 0.14 0.05 0.01 0.03 0.02 0.11 0.02 0.02 0.38

Table 13: Links aggregated at industry level. Note: The adjacency matrix is construct using threshold

m = 2. we use Fama-French 12 industry classification. For each panel, the first row gives the number of intra

or inter industry pairs indentified, and the second gives the proportion to total number of links firms in that

industry have.
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Finance Durbs Energy Hi-tec Health Manuf Nondur Other Shops Tel Utilities

Finance 1250 50 153 415 187 289 160 380 315 61 136

0.37 0.01 0.05 0.12 0.06 0.09 0.05 0.11 0.09 0.02 0.04

Durbs 50 8 7 29 5 31 10 30 20 5 4

0.25 0.04 0.04 0.15 0.03 0.16 0.05 0.15 0.10 0.03 0.02

Energy 153 7 246 54 11 42 19 72 22 8 60

0.22 0.01 0.35 0.08 0.02 0.06 0.03 0.10 0.03 0.01 0.09

Hi-tec 415 29 54 832 82 172 63 235 164 73 23

0.19 0.01 0.03 0.39 0.04 0.08 0.03 0.11 0.08 0.03 0.01

Health 187 5 11 82 246 44 26 67 44 9 2

0.26 0.01 0.02 0.11 0.34 0.06 0.04 0.09 0.06 0.01 0

Manuf 289 31 42 172 44 186 55 156 62 16 10

0.27 0.03 0.04 0.16 0.04 0.17 0.05 0.15 0.06 0.02 0.01

Nondur 160 10 19 63 26 55 112 75 114 21 5

0.24 0.02 0.03 0.10 0.04 0.08 0.17 0.11 0.17 0.03 0.01

Other 380 30 72 235 67 156 75 210 126 30 63

0.26 0.02 0.05 0.16 0.05 0.11 0.05 0.15 0.09 0.02 0.04

Shops 315 20 22 164 44 62 114 126 394 32 10

0.24 0.02 0.02 0.13 0.03 0.05 0.09 0.10 0.30 0.02 0.01

Telcm 61 5 8 73 9 16 21 30 32 16 8

0.22 0.02 0.03 0.26 0.03 0.06 0.08 0.11 0.11 0.06 0.03

Utilities 136 4 60 23 2 10 5 63 10 8 214

0.25 0.01 0.11 0.04 0 0.02 0.01 0.12 0.02 0.01 0.40

Table 14: Links aggregated at industry level. Note: The adjacency matrix is construct using threshold

m = 3. we use Fama-French 12 industry classification. For each panel, the first row gives the number of intra

or inter industry pairs indentified, and the second gives the proportion to total number of links firms in that

industry have.
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(1) factor component (2) spatial-temporal component

α β1 β2 β3 β4 β5 β6 ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

(1) Spatial CAPM

MG 0.015 0.598 0.416 0.002 -0.008 0.001 -0.003 0.004

( 0.001) ( 0.021) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 8.4% 91.6% 88.9% 51.2% 27.6% 20.9% 29.5% 21.2%

Np 394 394 387 387 387 387 387 387

(2) Spatial factor model (Fama-French three factors)

MG 0.014 0.570 0.129 -0.127 0.450 0.002 -0.008 -0.001 -0.001 0.002

( 0.001) ( 0.021) ( 0.014) ( 0.022) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 7.1% 90.1% 75.1% 81.5% 89.1% 52.7% 27.4% 20.4% 28.9% 19.1%

Np 394 394 394 394 387 387 387 387 387 387

(3) Spatial factor model (Fama-French five factors)

MG 0.011 0.586 0.144 -0.127 0.142 0.177 0.453 0.007 -0.007 -0.001 -0.002 0.002

( 0.001) ( 0.021) ( 0.014) ( 0.023) ( 0.022) ( 0.021) ( 0.018) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 5.8% 90.6% 74.4% 82.2% 75.1% 73.9% 88.9% 51.4% 27.4% 20.7% 27.4% 18.3%

Np 394 394 394 394 394 394 387 387 387 387 387 387

(4) Spatial factor model (Fama-French five factors plus Momentum)

MG 0.012 0.593 0.146 -0.137 0.139 0.184 -0.022 0.444 0.006 -0.007 -0.001 -0.002 0.001

( 0.001) ( 0.021) ( 0.014) ( 0.021) ( 0.022) ( 0.021) ( 0.007) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 4.8% 90.1% 74.1% 79.9% 75.4% 74.4% 59.1% 87.6% 51.7% 27.6% 22.2% 27.9% 18.3%

Np 394 394 394 394 394 394 394 387 387 387 387 387 387

Table 15: QML estimation results of heterogeneous spatial-temporal model using full sample, with

W constructed using threshold m = 2

(1) factor component (2) spatial-temporal component

α β1 β2 β3 β4 β5 β6 ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

(1) Spatial CAPM

MG 0.015 0.628 0.392 0.002 -0.008 0.001 -0.003 0.004

( 0.001) ( 0.021) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 8.9% 92.9% 87.8% 49.7% 27.9% 20.3% 29.2% 22.7%

Np 394 394 384 384 384 384 384 384

(2) Spatial factor model (Fama-French three factors)

MG 0.014 0.606 0.128 -0.117 0.420 0.002 -0.008 -0.000 -0.000 0.002

( 0.001) ( 0.021) ( 0.014) ( 0.022) ( 0.018) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 7.6% 92.1% 75.1% 82.0% 87.8% 51.8% 27.3% 20.6% 29.7% 20.6%

Np 394 394 394 394 384 384 384 384 384 384

(3) Spatial factor model (Fama-French five factors)

MG 0.012 0.621 0.144 -0.116 0.141 0.173 0.423 0.006 -0.006 -0.001 -0.002 0.001

( 0.001) ( 0.020) ( 0.014) ( 0.023) ( 0.022) ( 0.021) ( 0.018) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 6.3% 92.6% 73.3% 81.7% 75.1% 72.3% 87.5% 50.8% 28.4% 20.6% 27.9% 19.8%

Np 394 394 394 394 394 394 384 384 384 384 384 384

(4) Spatial factor model (Fama-French five factors plus Momentum)

MG 0.012 0.629 0.145 -0.130 0.138 0.182 -0.027 0.414 0.005 -0.007 -0.001 -0.002 0.001

( 0.001) ( 0.021) ( 0.014) ( 0.021) ( 0.022) ( 0.021) ( 0.007) ( 0.018) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 5.8% 92.1% 73.6% 78.7% 75.1% 73.3% 61.4% 87.0% 51.0% 28.4% 22.1% 28.4% 20.1%

Np 394 394 394 394 394 394 394 384 384 384 384 384 384

Table 16: QML estimation results of heterogeneous spatial-temporal model using full sample, with

W constructed using threshold m = 3

37

Electronic copy available at: https://ssrn.com/abstract=3827902



(1) factor component (2) spatial-temporal component

α β1 β2 β3 β4 β5 β6 βI ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

(1) Spatial CAPM+ Industry factor

MG 0.009 0.257 0.410 0.361 -0.014 -0.023 -0.008 -0.007 0.002

( 0.002) ( 0.024) ( 0.021) ( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 7.9% 82.5% 84.5% 86.6% 49.4% 44.4% 27.9% 29.5% 22.0%

Np 394 394 394 387 387 387 387 387 387

(2) Spatial factor model (Fama-French three factors)+ Industry factor

MG 0.007 0.230 -0.122 -0.147 0.456 0.381 -0.018 -0.018 -0.008 -0.006 -0.000

( 0.002) ( 0.025) ( 0.018) ( 0.018) ( 0.026) ( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 7.9% 80.5% 72.8% 80.2% 81.7% 84.8% 51.2% 39.0% 28.4% 28.7% 20.2%

Np 394 394 394 394 394 387 387 387 387 387 387

(3) Spatial factor model (Fama-French five factors)+ Industry factor

MG 0.006 0.246 -0.110 -0.155 0.107 0.198 0.449 0.386 -0.013 -0.017 -0.009 -0.008 -0.001

( 0.002) ( 0.025) ( 0.018) ( 0.019) ( 0.019) ( 0.017) ( 0.025) ( 0.017) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 6.9% 80.2% 72.1% 79.7% 69.3% 71.1% 82.5% 85.5% 46.5% 37.7% 27.6% 27.9% 19.9%

Np 394 394 394 394 394 394 394 387 387 387 387 387 387

(4) Spatial factor model (Fama-French five factors plus Momentum)

MG 0.006 0.257 -0.106 -0.148 0.103 0.194 -0.001 0.439 0.383 -0.013 -0.017 -0.009 -0.008 -0.001

( 0.002) ( 0.026) ( 0.018) ( 0.018) ( 0.019) ( 0.017) ( 0.007) ( 0.025) ( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 6.6% 80.5% 72.3% 78.9% 68.8% 68.8% 54.6% 80.7% 85.5% 45.7% 38.2% 26.9% 27.4% 18.9%

Np 394 394 394 394 394 394 394 394 387 387 387 387 387 387

Table 17: QML estimation results of Industry factors augmented models Equation 33 using full

sample, with W constructed using threshold m = 2

(1) factor component (2) spatial-temporal component

α β1 β2 β3 β4 β5 β6 βI ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

(1) Spatial CAPM+ Industry factor

MG 0.009 0.282 0.414 0.340 -0.014 -0.023 -0.007 -0.007 0.002

( 0.002) ( 0.024) ( 0.021) ( 0.017) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 7.9% 83.2% 84.3% 84.6% 49.7% 44.5% 27.6% 30.2% 22.7%

NP 394 394 394 384 384 384 384 384 384

(2) Spatial factor model (Fama-French three factors)+ Industry factor

MG 0.008 0.259 -0.125 -0.138 0.459 0.354 -0.017 -0.017 -0.008 -0.006 -0.000

( 0.002) ( 0.025) ( 0.018) ( 0.018) ( 0.026) ( 0.017) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 8.1% 82.5% 73.3% 80.7% 82.0% 83.3% 50.3% 39.3% 27.9% 28.9% 20.3%

Np 394 394 394 394 394 384 384 384 384 384 384

(3) Spatial factor model (Fama-French five factors)+ Industry factor

MG 0.006 0.275 -0.113 -0.146 0.106 0.195 0.454 0.358 -0.013 -0.017 -0.009 -0.007 -0.001

( 0.002) ( 0.025) ( 0.018) ( 0.019) ( 0.019) ( 0.017) ( 0.025) ( 0.017) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 7.1% 82.7% 72.3% 79.7% 69.8% 70.3% 82.0% 83.9% 47.1% 38.0% 28.1% 27.6% 20.6%

Np 394 394 394 394 394 394 394 384 384 384 384 384 384

(4) Spatial factor model (Fama-French five factors plus Momentum)

MG 0.006 0.257 -0.106 -0.148 0.103 0.194 -0.001 0.439 0.383 -0.013 -0.017 -0.009 -0.008 -0.001

( 0.002) ( 0.026) ( 0.018) ( 0.018) ( 0.019) ( 0.017) ( 0.007) ( 0.025) ( 0.018) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 6.6% 80.5% 72.3% 78.9% 68.8% 68.8% 54.6% 80.7% 85.5% 45.7% 38.2% 26.9% 27.4% 18.9%

Np 394 394 394 394 394 394 394 394 387 387 387 387 387 387

Table 18: QML estimation results of Industry factors augmented models Equation 33 using full

sample, with W constructed using threshold m = 3
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Figure 1: Histogram of bootstrapped ρ̂bij for all i 6= j, b = 1, . . . , 500.
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