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ABSTRACT
We propose an asset pricing factor model constructed with semiparametric characteristics-based mispric-
ing and factor loading functions. We approximate the unknown functions by B-splines sieve where the
number of B-splines coefficients is diverging. We estimate this model and test the existence of the mispricing
function by a power enhanced hypothesis test. The enhanced test solves the low power problem caused
by diverging B-splines coefficients, with the strengthened power approaching one asymptotically. We also
investigate the structure of mispricing components through Hierarchical K-means Clusterings. We apply our
methodology to CRSP (Center for Research in Security Prices) and Compustat data for the U.S. stock market
with one-year rolling windows during 1967–2017. This empirical study shows the presence of mispricing
functions in certain time blocks. We also find that distinct clusters of the same characteristics lead to similar
arbitrage returns, forming a “peer group” of arbitrage characteristics.
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1. Introduction

Stock returns have both common and firm-specific compo-
nents. Ross (1976) proposed arbitrage pricing theory (APT)
to summarize that expected returns on financial assets can
be modeled as a linear combination of risk factors. In such a
model, each asset has a sensitivity beta to the risk factor. The
APT model explains the excess returns in the cross-sectional
direction. Fama and French (1993) and Fama and French (2015)
proxied those factors by the returns on portfolios sorted by dif-
ferent characteristics, and they developed three-factor and five-
factor models. After extracting the common movement parts,
they treated the intercept as the mispricing alpha, which is asset-
specific and cannot be explained by those risk factors. Many
articles use a similar method to present other factor models,
such as the four-factor model of Carhart (1997), the q-factor
model of Hou et al. (2015), and the factor zoo by Feng et al.
(2020) among others. All of the above articles studied observed
factors and did not assign characteristics-based information to
either alpha or beta.

Security-specific characteristics, such as capitalization and
book to market ratio, are usually documented to explain asset-
specific excess returns. Freyberger et al. (2020) analyzed the
nonlinear effects of 62 characteristics through Lasso-style
regressions. This study concluded that 13 of these characteristics
have explanatory power on stock excess returns after selecting
by adaptive group Lasso. Characteristics-based information
is also exploited to develop arbitrage portfolios by directly
parameterizing the portfolio weights as a linear function of
characteristics, as in Hjalmarsson and Manchev (2012) and
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Kim et al. (2021). Empirically, they showed that their portfolio
outperformed other baseline competitors.

This article’s contributions are fourfold. First, we build up a
more flexible semiparametric characteristics-based asset pric-
ing factor model focusing on the mispricing component. Sec-
ond, we extend previous estimation and testing methods, which
can fit the current framework better. Especially, we extend the
power-enhanced test of Fan et al. (2015) in a group manner to
strengthen the conventional Wald test for mispricing functions.
This test can also select the characteristics that contribute to
arbitrage portfolios simultaneously. Third, we construct a two-
layer clustering structure of mispricing components. Finally, our
methods are applied to 50 years of monthly U.S. stock data.
We detect distinct clusters of the same characteristics resulting
in similar arbitrage returns, forming a “peer group” of arbi-
trage characteristics. This finding supplements existing portfo-
lio management techniques by implying that the development
of arbitrage portfolios through the asset weights determined by
the linear mispricing function is improvable.

This class of models has a basic regression specification in
Equation 1. Consider the panel regression model

yit = αi +
J∑

j=1
βjifjt + εit , (1)

where yit is the excess return of security i at time t; fjt is the jth
risk factor’s return at time t; βji denotes the jth factor loading of
asset i; αi represents the intercept (mispricing) of asset i; and εit
is the mean zero idiosyncratic shock. In terms of factor loadings
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βji, Connor and Linton (2007) and Connor et al. (2012) studied
a characteristic-beta model, which bridges the beta-coefficients
and firm-specific characteristics by specifying each beta as an
unknown function of one characteristic. In their model, beta
functions and unobservable factors are estimated by the back-
fitting iteration. They concluded that those characteristic-beta
functions are significant and nonlinear. Their model can be
summarized by

yit =
J∑

j=1
gj(Xji)fjt + εit , (2)

where Xji is the jth observable characteristic of firm i.
They restricted their beta function to be univariate and did

not consider the components of factor loading functions that
cannot be explained by characteristics. To overcome this lim-
itation, Fan et al. (2016) allowed βji in Equation 2 to have a
component explained by observable characteristics as well as an
unexplained or stochastic part, written as βji = gj(Xi) + uji,
where uji is mean independent of Xi. They proposed the Pro-
jected Principal Component Analysis (PPCA), which projects
stock excess returns onto space spanned by firm-specific charac-
teristics and then applies Principal Component Analysis (PCA)
to the projected returns to find the unobservable factors. This
method has attractive properties even under the large n and
small T setting. However, they did not study the mispricing
part (alpha), which is crucial to both asset pricing theories and
portfolio management.

In this article, we work on a semiparametric characteristics-
based alpha and beta model, which uses a set of security-specific
characteristics that are similar to Freyberger et al. (2020). We use
unknown multivariate characteristic functions to approximate
both αi and βji in Equation (1). Specifically, we assume αi and
βji are functions of a large set of asset-specific characteristics as
αi = h(Xi)+γi and βji = gj(Xi)+λij1. We only specify additive
structure of h(Xi) and gj(Xi), which are further approximated by
B-splines sieve. We then estimate h(Xi), gj(Xi) and unobservable
risk factors fjt . In addition, we design a power-enhanced test
and Hierarchical K-mean Clustering for the mispricing function
h(Xi) to study the nonlinear behavior of arbitrage characteris-
tics.

Some recent articles such as Kim et al. (2021) and Kelly et al.
(2019) analyzed a similar model as ours, which assume that
both h(Xi) and gj(Xi) are linear functions. They both included
around 40 characteristics in Xi. However, they drew differ-
ent conclusions on the existence of h(Xi). Kim et al. (2021)
determined assets weights of arbitrage portfolios using one-
year rolling window estimates 1

n ĥ(Xi). They showed that their
arbitrage portfolios returns are statistically and economically
significant. However, Kelly et al. (2019) applied instrumented
principal component analysis (IPCA) to the entire time span
from 1965 to 2014, and concluded no evidence to reject the null
hypothesis H0 : h(Xi) = Xᵀ

i B = 0 through the bootstrapping.
This dispute spurs the development of a more flexible model
and reliable hypothesis tests to investigate the existence and
structure of h(Xi). The IPCA, which requires both large n and
T to work, was introduced in Kelly et al. (2017). This method

1Xi is a vector of a large set of asset-specific characteristics of stock i.

does not fit our setting since we apply rolling window analysis
with small T. Furthermore, Kelly et al. (2019) restricted the
function form of h(Xi) and gj(Xi) to be time-invariant, which is
not consistent with our empirical results under a semiparamet-
ric setting. To clarify the differences with the aforementioned
research, this article proposes a semiparametric model, which
allows for both nonlinearity and time-variation of h(Xi) and
gj(Xi). Furthermore, we consider a different economic question,
namely, the existence and structure of mispricing functions.
Our empirical study sheds light on why Kelly et al. (2019) and
Kim et al. (2021) drew different conclusions: weak, time-varying
and nonlinear characteristics-based mispricing functions only
appear in certain rolling windows, which is hard to be detected
without rolling window analysis. However, given the presence of
some persistent arbitrage characteristics, portfolios developed
through mispricing functions can provide arbitrage returns.

The unrestrictive model in this article brings both oppor-
tunities and challenges. According to Huang et al. (2010), the
number of B-spline knots must increase in the number of obser-
vations to achieve accurate approximation and good asymp-
totic performance. Therefore, the dimension of B-splines bases
coefficients also needs to grow with the sample size. Besides,
mispricing functions are treated as anomalies. Under a correctly
specified factor model, coefficients of these B-splines bases that
are employed to approximate h(Xi) are very likely to be sparse.
All of these circumstances make the conventional Wald tests
have very low power as discussed in Fan et al. (2015). Therefore,
a power-enhanced test should be developed to strengthen the
power of Wald tests and to detect the most relevant character-
istics among a characteristic zoo included in h(Xi). Kock and
Preinerstorfer (2019) illustrated that if the number of coeffi-
cients diverges as the number of observations approaches infin-
ity, the standard Wald test is power enhanceable. Fan et al. (2015)
proposed a power-enhanced test by introducing a screening
process on all estimated coefficients one by one. They added
significant components as a supplement to the standard Wald
test. In this article, we extend Fan et al. (2015) to a group
manner to enhance the hypothesis test on a high-dimensional
additive semiparametric function, H0 : h(Xi) = 0. This method
allows all the significant components of h(Xi) to be selected and
contribute to the test statistic, with the test power approaching
one.

The careful analysis of h(Xi) is theoretically and practi-
cally meaningful. Firstly, the presence of h(Xi) is an important
component of Arbitrage Pricing Theory (APT) and can con-
tribute to asset pricing theories, namely, linking the mispricing
functions with security-related characteristics. Secondly, as in
Hjalmarsson and Manchev (2012) and Kim et al. (2021), h(Xi)
can be used to construct arbitrage portfolios through observed
characteristics. However, both research was built upon the con-
dition that h(Xi) is linear over characteristics. If the mispric-
ing function h(Xi) is not monotonic, simply setting portfolio
weights to the estimated values of linear-specified h(Xi) can be
problematic. In this article, we show that some characteristics
with substantially different values give rise to similar arbitrage
returns. The distance of arbitrage returns between two assets
i and j is dij = |h(Xi) − h(Xj)| and the similarity of their
characteristics is ||Xi − Xj||2, where || · ||2 represents L2 dis-
tance. Inspired by Hoberg and Phillips (2016) and Vogt and
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Linton (2017), we employ a hierarchical K-means clustering
to classify these characteristics within each mispricing return
group. We present the dynamic of distinct clusters of the same
characteristics leading to similar arbitrage returns, forming a
“peer group” of arbitrage characteristics. Therefore, under the
semiparametric setting, the asset weighting function should rely
on these time-varying and nonlinear peer groups.

The rest of this article is organized as follows. Section 2 sets
out the semiparametric model. Section 3 introduces the assump-
tions and estimation methods. Section 4 constructs a power-
enhanced test for high dimensional additive semiparametric
functions. Section 5 employs Hierarchical K-Means Clustering
to investigate peer groups of arbitrage characteristics. Section
6 describes the asymptotic properties of our estimates and test
statistics. Section 6 simulates data to verify the performance
of our methodology. Section 7 presents an empirical study.
Finally, Section 8 concludes this article. Characteristics descrip-
tion tables, proofs, mispricing curves, and plots of peer groups
are arranged in the appendix.

2. Model Setup

We assume that there are n securities observed over T time
periods. We also assume that during a short time window, each
security has P time-invariant observed characteristics, such as
market capitalization, momentum, and book-to-market ratios.
Meanwhile, we may omit heteroscedasticity by assuming that
each characteristic shares a certain form of variation within each
period for all securities. We suppose that

yit = (h(Xi) + γi) +
J∑

j=1
(gj(Xi) + λij)fjt + εit , (3)

where yit is the monthly excess return of the ith stock at the
month t; Xi is a 1×P vector of P characteristics of stock i during
time periods t = 1, . . . T. T is a small and fixed time block.
In practice, most characteristics are updated annually. Thus, we
assume Xi is time-invariant in the one-year time window. h(Xi)
is an unknown mispricing function explained by a large set of
characteristics whereas γi is the random intercept of the mispric-
ing part that cannot be explained by characteristics. Similarly, we
have characteristics-beta function gj(·) to explain the jth factor
loadings and the unexplained stochastic part of the loading is
λij. λij is orthogonal to the gj(·) function. fjt is the realization of
the jth risk factor at time t. Finally, εit is homoskedastic zero-
mean idiosyncratic residual of the ith stock at time t. Random
variables γi and λij are used to generalize our settings and not to
be estimated. They will be treated as noise in the identification
assumptions.

To avoid the curse of dimensionality, we impose additive
forms on both h(·) and gj(·) functions: h(Xi) = ∑P

p=1 μp(Xip)

and gj(Xi) = ∑P
p=1 θjp(Xip), where μp(Xip) and θjp(Xip) are

uni-variate unknown functions of the pth characteristic Xp. We
rewrite the model as:

yit = (

P∑
p=1

μp(Xip) + γi) +
J∑

j=1
(

P∑
p=1

θjp(Xip) + λij)fjt + εit , (4)

Assumption 1. We suppose that

E(εit|X, fjt) = 0,

E(h(Xi)) = E(gj(Xi)) = 0, for j = 1, 2, . . . , J,

E(γi|X) = E(γi),

E(λij|X) = E(λij), for j = 1, 2, . . . , J,

E(h(Xi)gj(Xi)) = 0, for j = 1, 2, . . . , J.

Similar to Connor et al. (2012) and Fan et al. (2016), Assump-
tion 1 is to standardize model settings, including the zero mean
assumption for factor loadings and mispricing functions for
identification purposes. We also impose orthogonality between
mispricing and factor loading parts for the identification reason.
This is because the variation of risk factors can be absorbed into
the mispricing part if it is not orthogonal to the factor loadings.
More discussions can be found in Connor et al. (2012).

3. Estimation

In this section, we discuss the approximation of unknown uni-
variate functions and our estimation methods for model Equa-
tion 3. In the semiparametric setting, we apply the Projected-
PCA following Fan et al. (2016) to work on the common factors
and characteristics-beta directly. Next, we project the residuals
onto the characteristics-based alpha space that is orthogonal
to the systematic part. The second step is similar to equality-
constrained OLS.

3.1. B-splines Approximation

We use B-splines sieve to approximate unknown functions θ(·)
and μ(·) in Equation (4). Similar to Huang et al. (2010) and
Chen and Pouzo (2012), we have the following procedures. First,
suppose that the pth covariate Xp is in the interval [D0, D],
where D0 and D are finite numbers with D0 < D. Let D =
{D0, D0, . . . , D0︸ ︷︷ ︸

l

< d1 < d2 < · · · < dmn < D, D, . . . , D︸ ︷︷ ︸
l

} be a

simple knot sequence on the interval [D0, D]. Here, mn = �nv�
(�·� gives nearest integer) is a positive integer of the number of
internal knots, which is a function of security size n in period t
with 0 < v < 0.5. l is the degree of those bases. Therefore, we
have Hn = l + mn bases in total, which will diverge as n → ∞.
Following this setting, a set of B-splines can be built for the space
�n[D].

Second, for the pth characteristic Xp, there is a set of
Hn orthogonal bases {φ1p(Xp), . . . , φHnp(Xp)}. Those uni-
variate unknown functions can be approximated as linear
combinations of these bases as μp(Xp) = ∑Hn

q=1 αqφqp(Xp) +
Rμ

p (Xp) and θp(Xp) = ∑Hn
q=1 βjqφqp(Xp) + Rθ

p(Xp), where
Rμ

p (Xp) and Rθ
p(Xp) are approximation errors. It is not necessary

to use the same bases for both unknown functions and the
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representation here is for notational simplicity only. Therefore,
the model Equation (4) can be written as follows:

yit =
P∑

p=1
(

Hn∑
q=1

αpqφpq(Xip) + Rμ
p (Xp)) + γi

+
J∑

j=1
(

P∑
p=1

(

Hn∑
q=1

βjpqφpq(Xip) + Rθ
p(Xp)) + λij)fjt + εit .

For each i = 1, 2, . . . , n , p = 1, 2, . . . , P and t = 1, 2, . . . , T,
we have

1T = (1, . . . , 1)ᵀ ∈ R
T ,

βj = (β1,j1, . . . , βHn,j1, . . . , β1,jP, . . . , βHn,jP)ᵀ ∈ R
HnP,

B = (β1, . . . , βJ),

A = (α11, . . . , α1Hn , . . . , αP1, . . . , αPHn)
ᵀ ∈ R

HnP,


(X) =

⎡
⎢⎢⎢⎣

φ1,11(X11) · · · φ1,1Hn (X11) · · · φ1,P1(X1P) . . . φ1,PHn (X1P)

φ2,11(X21) · · · φ2,1Hn (X21) · · · φ2,P1(X2P) . . . φ2,PHn (X2P)

...
...

...
. . .

...
φn,11(Xn1) · · · φn,1Hn (Xn1) · · · φn,P1(XnP) . . . φn,PHn (XnP)

⎤
⎥⎥⎥⎦ ,

where φi,ph(Xip) is the hth basis of the pth characteristic of asset
i at time t. Therefore, the original model

Y = (h(X) + �)1ᵀT + (G(X) + �)Fᵀ + U ,

can be represented by B-splines sieve as follows:

Y = (
(X)A+�+Rμ(X))1ᵀT +(
(X)B+�+Rθ (X))Fᵀ+U .
(5)

Y is the n × T matrix of yit ; 
(X) is the n × PHn matrix of B-
splines bases; A is a PHn × 1 matrix of mispricing coefficients;
Rμ(X) is an n×1 matrix of approximation errors; B is a PHn × J
matrix factor loadings’ coefficients; Rθ (X) is a n × J matrix of
approximation errors. We have Rμ

p (Xp) →p 0 and Rθ
p(Xp) →p

0, as n → ∞ as in Huang et al. (2010). Therefore, we omit the
approximation errors for simplicity henceforth. F is the T × J
matrix of ftj and U is a n × T matrix of εit . h(X) is a n × 1 vector
of characteristics-based mispricing component; G(X) is an n ×
J vector of characteristics-based factor loadings; 1T is a T × 1
vector of 1. The rest are defined the same as Equation 4.

We define a projection matrix as follows:

P = 
(X)(
(X)ᵀ
(X))−1
(X)ᵀ.

The remaining goals of this article are to estimate both h(X)

and G(X) consistently and conduct a power-enhanced test on
the hypothesis H0 : h(X) = 0, i.e., to check the existence of
mispricing functions under semiparametric settings. Finally, we
cluster peer groups of arbitrage characteristics.

3.2. Two-Step Projected-PCA

In this section, we combine and extend Projected-PCA by Fan
et al. (2016) and equality constrained least square similar to Kim
et al. (2021) to estimate the model. To facilitate the estimation,
we define a T × T time series demeaning matrix DT = IT −
1
T 1T1ᵀT . 2 Next, we demean the equation above on both sides.
Therefore, we have

YDT = Ỹ = (
(X)B + �)FᵀDT + UDT .

Mispricing terms disappear since they are time-invariant by
(
(X)A+�)1ᵀTDT = 0. This helps us to work on the systematic
part later. Henceforth, we use F to represent the time-demeaned
factor matrix.

Our procedures are designed to estimate factor loadings
G(X), time-demeaned unobserved factors F and mispricing
coefficients A in sequence.

Under Assumption 1, we have the following estimation pro-
cedures:

1 Projecting Ỹ onto the spline space spanned by {Xip}i�n,p�P
through a n × n projection matrix P with P = 
(X)(
(X)ᵀ


(X))−1
(X)ᵀ . We then collect the projected data Ŷ =

(X)(
(X)ᵀ
(X))−1
(X)ᵀỸ .

2 Applying the principal component analysis to the projected
data ŶᵀŶ . This allows us to work directly on the sample
covariance of G(X)Fᵀ, under the condition E(gj(Xi)εit) =
E(gj(Xi)λij) = 0.

3 Estimating F̂ as the eigenvectors corresponding to the first
J (assumed given) largest eigenvalues of the T × T matrix
1
n ŶᵀŶ (covariance of projected Ŷ).

The method above substantially improves estimation
accuracy and facilitates theoretical analysis even under the
large n and small T . Small T is preferable in our model
setting as we use one-year rolling windows analysis in both
simulation and empirical studies, and large n is required for
asymptotic analysis.

Factor loadings Ĝ(X) are estimated as follows:

Ĝ(X) = ŶF̂(F̂ᵀF̂)−1

In the next step, we estimate the coefficients of the mis-
pricing bases.

4 The estimator of A is

Â = arg min
A

vec(Y − 
(X)A1ᵀT − Ĝ(X)F̂ᵀ)ᵀ

vec(Y − 
(X)A1ᵀT − Ĝ(X)F̂ᵀ), (6)

subject to Ĝ(X)ᵀ
(X)A = 0J.
Let a PHn × 1 vector Â be a closed-form solution:

Â = QÃ,

where

Q = I − (
(X)ᵀ
(X))−1
(X)ᵀĜ(X)(Ĝ(X)ᵀĜ(X))−1Ĝ(X)ᵀ
(X),

2IT is a T × T identity matrix, and 1T is a T × 1 matrix of 1.
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Ã = 1
T

(
(X)ᵀ
(X))−1
(X)ᵀ(Y − Ĝ(X)F̂ᵀ)1T ,

given PĜ(X) = Ĝ(X).
As in Assumption 1, the h(X) is orthogonal to the

characteristics-based loadings G(X).
5 We also estimate the covariance matrix of Â, that is, , by

extending the methods of Liew (1976). This can facilitate
theoretical analysis in the next section. According to Liew
(1976), Â is the equality constrained least-square estimator,
which has the covariance matrix as (only under n�T and
covariance shrinkage as in Ledoit et al. (2012) and Fan et al.
(2013) among others.):

O = QOÃQᵀ,

where:

OÃ = (
(X)ᵀ
(X))−1
(X)ᵀ

⎡
⎢⎣

σ̂ 2
1 0 0

0
. . . 0

0 0 σ̂ 2
n

⎤
⎥⎦


(X)(
(X)ᵀ
(X))−1,

σ̂ 2
i =

∑T
1 ê2

it
T

,

where
∑T

1 ê2
it = ∑T

1 (yit − ȳi − ∑P
p=1

∑Hn
q=1 α̂pqφpq(xip) −∑J

j=1(
∑P

p=1
∑Hn

q=1 β̂jpqφpq(xip))f̂jt)2. Heteroscedasticity is
caused by γi.

4. Power-Enhanced Tests

There are considerable discussions about the mispricing phe-
nomenon under factor models, while the existence of mispric-
ing functions remains controversial. Namely, whether there are
relevant covariates explaining remaining excess returns after
subtracting co-movements components captured by risk factors.
Recently, Kim et al. (2021) found the characteristics arbitrage
opportunities by estimating a linear characteristic mispricing
function without providing theoretical results. However, Kelly
et al. (2019) conducted a conventional Wald hypothesis test on
the similar mispricing function using bootstrap, concluding that
there is no evidence to reject the null hypothesis H0 : h(X) =
0. Additionally, they applied the bootstrap method to estimate
the covariance matrix , which caused potential problems for
theoretical analysis. Moreover, according to Fan et al. (2015),
their test results may have relatively low power when the true
coefficient vector of linear mispricing function A has a sparse
structure.

Both studies adopt a parametric framework, which relies on
the strong assumption of linearity. However, this assumption
is not consistent with Connor et al. (2012), which showed that
both characteristic-beta and mispricing functions are very likely
to be nonlinear. Therefore, we propose a semiparametric model
to accommodate the nonlinearity to a great extent.

But semiparametric framework leads to additional chal-
lenges for inference. On the one hand, as mentioned above,

the number of coefficients of mispricing B-splines diverges as
n → ∞, which implies that the power of the standard Wald
test can be quite low (see Fan et al. 2015). On the other hand,
according to other research like Fama and French (1993) and
Fama and French (2015), mispricing terms can be regarded
as anomalies. This means that in our model setting, the true
mispricing coefficient vector A can be high-dimensional but
sparse, reducing the power of the conventional Wald test further.

As in Kock and Preinerstorfer (2019), conventional hypothe-
sis tests under these circumstances are power enhanceable. The
power-enhanced Wald test in this article is an extension of Fan
et al. (2015) to a group manner, namely, the hypothesis test
under high-dimensional additive semiparametric settings. The
proposed test is power strengthened when the dimension of the
coefficients of the additive regression A is diverging as n → ∞
without size distortion. Meanwhile, this test is robust to sparse
alternatives. On top of that, the proposed test can select the most
important components from sparse additive functions. Finally,
the proposed method can also be applied when the number of
characteristics is diverging, that is, P → ∞.

We construct a new test

H0 : h(X) = 0, H1 : h(X) �= 0,

equivalently,

H0 : A = 0, H1 : A ∈ A,

where A ⊂ R
PHn\0.

Here, we have:

S1 = ÂᵀO−1Â − PHn√
2PHn

,

where S1 is the “original” Wald test statistic; P is the number of
characteristics; PHn is the total number of B-spline bases, and
Â ∈ R

PHn . The value of Hn is a function of asset number n,
and Hn → ∞ as n → ∞. Under H0, S1 has a nondegenerate
limiting distribution F as n → ∞. Given the significance level
q, q ∈ (0, 1) as well as the critical value Fq:

S1|H0 →d F,

lim
n→∞ Pr(S1 > Fq|H0) = q.

Pesaran and Yamagata (2012) showed that

S1|H0 →d N (0, 1),

under regularity conditions.
Potentially, sparse and diverging PHn means that it is plau-

sible to add a power-enhanced component to S1, which can
improve the power of the hypothesis test without any size dis-
tortions.

Therefore, we can construct an extra screening component
S0 as follows:

S0 = Hn

P∑
p=1

I(
Hn∑

h=1
|α̂ph|/σ̂ph � ηn),
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where σ̂ph is the square-root of the phth entry of the diagonal
elements of �̂. I(·) is an indicator for the screening process
while ηn is a data-driven threshold value to avoid potential size-
distortion.

Here, we discuss the choice of ηn. By construction and the
assumption of independent characteristics, we assume that all B-
splines bases are orthogonal. Our goal is to bound the maximum
of those standardized coefficients under the null hypothesis.

Define Z = max
{1�p�P,1�h�Hn}

{|α̂ph|/σ̂ph}. We have

α̂ph/σ̂ph|H0 →d N(0, 1),

E(Z|H0) = √
2 log PHn.

After grouping the coefficients of bases used to approximate
the unknown function of each characteristic, we try to bound
max(

∑Hn
h=1 |α̂1h|/σ̂1h, . . . ,

∑Hn
h=1 |α̂ph|/σ̂ph . . . ,

∑Hn
h=1 |α̂Ph|/σ̂Ph)

under H0, Following this, we set the threshold as ηn =
Hn

√
2 log(PHn), where Hn = l + nv. As Hn is a diverging

sequence, it can control the influence of the group size properly.
Meanwhile, ηn also diverges so that ηn is a conservative
threshold value used to avoid potential size distortion.

Apart from strengthening the power of conventional hypoth-
esis test, I(·) is a screening term that can select the most relevant
characteristics at the same time.

We then define the arbitrage characteristics set, which
includes the characteristics that have the strong explanation
power for mispricing functions:

M̂ = {Xp ∈ X :
Hn∑

h=1
|α̂ph|/σ̂ph � ηn, p = 1, 2, . . . , P},

and M is the cardinality of the set containing mispricing char-
acteristics. When the set M̂ is relatively small, conventional
tests are likely to suffer the lower power problem. The added
S0 strengthens the power of the test and drives the power to one
since S0 is slowly diverging.

Therefore, our new test statistic is S = S0 + S1 , and
asymptotic properties of S will be discussed later.

To conclude, the advantages of S = S0 + S1 are:

1. The power of the hypothesis test on H0 : h(X) = 0 is mainly
enhanced without size distortions.

2. We can find specific characteristics which cause the mispric-
ing by this screening mechanism.

As designed, S0 satisfies all three properties of Fan et al. (2015),
as n → ∞:

1. S0 is nonnegative, Pr(S0 � 0) = 1
2. S0 does not cause size distortion: under H0, Pr(S0 =

0|H0) → 1
3. S0 enhances test power. Under H1, S0 diverges quickly in

probability given the well chosen ηn.

Based on properties of S0, we have three properties of S listed

1. No size-distortion lim sup
n→∞

Pr(S > Fq|H0) = q

2. Pr(S > Fq|H1) � Pr(S1 > Fq|H1). Hence, the power of S is
at least as large as that of S1.

3. Pr(S > Fq|M̂ �= ∅) → 1 when S0 diverges. This happens,
especially, when the true form of A has a sparse structure.

5. Hierarchical K-Means Clustering

This section introduces a Hierarchical K-means Clustering
method to find peer groups of arbitrage characteristics based
on their arbitrage returns. We ask whether distinct groups of
the same arbitrage characteristics, according to their similarity
measured by ||Xi − Xj||2, may result in similar characteristic-
based arbitrage returns in each rolling block, which is an impli-
cation for the nonmonotonic mispricing function, and forms
a “peer group” of arbitrage characteristics. Because traditional
arbitrage portfolios as in Kim et al. (2021) and Hjalmarsson and
Manchev (2012) relied on the linearity of characteristics-based
mispricing components to work, our clustering results can show
whether this method is still applicable under a more flexible
semiparametric model. If there are persistent peer groups in
arbitrage returns, investors should consider to long the assets
in the peer group with the highest arbitrage returns while short
the assets in the peer group with the lowest arbitrage returns to
form an arbitrage portfolio.

Introduction of K-means clustering can be found in Cox
(1957) and Fisher (1958).

After the screening process in Section 4, we obtain the rel-
evant components of mispricing function h(X), which is esti-
mated as

M̂ = {Xp ∈ X :
Hn∑

h=1
|α̂ph|/σ̂ph � ηn, p = 1, 2, . . . , P}.

We define an n × M matrix M of arbitrage characteristics at
time window t as follows:

M = {X1, . . . , Xm, . . . , XM}, where Xm ∈ M̂.

Note that these characteristics are time-invariant in each rolling
window. We also set characteristics-based arbitrage returns of
asset i in month t as:

ÿit = φ(Mi)ÂM,

where φ(Mi) and ÂM are the corresponding parts of the matrix

(Xi) and the vector Â. For each rolling window, we classify all
n assets through a 2-layer K-means clustering. At the first layer,
we cluster these assets into K groups according to the similarity
of their characteristics-based arbitrage returns ÿit . At the second
layer, we divide Rj subgroups within the jth group from the
first layer by the similarity of their arbitrage characteristics,
where j = 1, 2, . . . , K . Finally, the peer groups of arbitrage
characteristics can be attained. We repeat this method for all
rolling blocks to investigate dynamic patterns of these peer
groups. These clusterings will provide illustrative evidence of
linear/nonlinear and time-invariant/time-varying structure of
mispricing function h(X).
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We give the classification procedures of both layers. We
define �ij as the difference between characteristics-based arbi-
trage returns of ÿit and ÿjt , as well as ϒij as the difference
between arbitrage characteristics

�ij = ÿit − ÿjt , where i �= j, i, j = 1, 2, . . . , n.

ϒij = ||Mi − Mj||2, where i �= j, i, j = 1, 2, . . . , n,

Mi represents the ith row of M. We set two tolerance thresholds
ψy and ψx, which are used to control the biggest difference
within each group of both layers separately. To accelerate the
convergence of the K-means Clustering, we firstly apply a first
difference process, which is introduced below, to obtain cen-
troids as in Vogt and Linton (2017).

For the first layer, we have the first difference process:

1. First difference: We randomly pick ith asset and then we
calculate �ij with other assets j = 1, 2, . . . , n. Thus, we
obtain �i(1) . . . �i(n), with n being the total individuals for
classification. Without loss of generality, we assume �i(1) =
min{�i(1), . . . , �i(n)}, and �i(n) = max{�i(1), . . . , �i(n)}.

2. Ordering: We rank the values obtained in Step 1 as follows:

�i(1) � . . . � �i(j1−1) < �i(j1) � . . . � �i(j2−1)

< �i(j2) � . . . � �i(j3−1)

...
< �i(jK−1) � . . . � �i(n).

We use the strict inequality mark to show large jumps of “first
difference,” all of which are larger than ψy , while the weak
inequality means that the distance calculated is not larger
than ψy. We identify K − 1 jumps that are larger than ψy
above. Thus, the initial classification is achieved, and we have
a total of K groups with j1 − 1 members in the first group C1,
j2 − j1 members in the second group C2 , . . . , and n− jK−1 +1
members in the final group CK .

In terms of the second layer, for the assets in the kth group
Ck, we use the same method to further divide them into r

subgroups as R1k,R2k, . . . ,Rrk. Within each subgroup, we
have

ϒab = ||Ma − Mb||2 � ψx, where a, b ∈ Rik, i = 1, 2, . . . , r,
and k = 1, 2, . . . , K.

The K-means algorithm is:

1. Step 1: Determine the starting mean values for each
group ˆ̄c[0]

1 , . . . , ˆ̄c[0]
K and calculate the distances D̂k(i) =

�(ÿit , ˆ̄c[0]
k ) = |ÿit − ˆ̄c[0]

k | for each i and k. Define the partition
{C[0]

1 , . . . , C[0]
K } by assigning the ith individual to the k-th

group C[0]
k if D̂k(i) = min1�k′�K D̂k′(i).

2. Step l: Let {C[l−1]
1 , . . . , C[l−1]

K } be the partition of {1, . . . , n}
from the latest iteration step. Calculate mean functions

ˆ̄c[l]
k = 1

|C[l−1]
k |

∑
i∈C[l−1]

k

ÿit for 1 � k � K.

And then we calculate �(ÿit , ˆ̄c[l]
k ) = |ÿit − ˆ̄c[l]

k | for each i
and k. Define the partition {C[l]

1 , . . . , C[l]
K } by assigning the ith

individual to the kth group C[l]
k if D̂k(i) = min1�k′�K D̂k′(i).

3. Iterate the above steps until the partition {C[w]
1 , . . . , C[w]

K } does
not change anymore.

To accelerate the convergence of K-means algorithm, at the
step 1, results of the first difference are used. As we have already
obtained our initial grouping {C1, . . . , CK}, therefore, the start-
ing value for the Step 1 is

ˆ̄c[0]
k = 1

|Ck|
∑
i∈Ck

ÿit for 1 � k � K,

where |Ck| is the cardinality of the group Ck.
The consistency and other theoretical results of the above

procedures can be found in Pollard (1981), Pollard et al. (1982),
Sun et al. (2012) and Vogt and Linton (2017).

For the second layer, we repeat the procedures within
each group C[w]

k with respect to ϒab, and the structure of
characteristics-based arbitrage returns is:
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The first layer is the structure of characteristics-based arbi-
trage returns, while the second layer gives peer groups of charac-
teristics that can provide similar characteristics-based arbitrage
returns.

The number of clusterings is determined by threshold values
ψy and ψx directly. ψy and ψx are chosen by the tradeoff between
the number of clusterings and the total within-group sum of
squares.

6. Asymptotic Properties

This section discusses assumptions and properties of estimates
and the power enhanced statistic S.

Definition 6.1. We define A →P B as n → ∞ of two n × m
matrix A and B with fixed p when 1

n (A−B)ᵀ(A−B) →P 0m×m
as n → ∞.

6.1. Assumptions

Assumption 2. As n → ∞, we have

1
n

YᵀY →P MY ,

FᵀF = IJ ,

where MY is a positive definite matrix, and IJ is a J × J identity
matrix.

We define λmin(M) and λmax(M) as the largest and the
smallest eigenvalues of matrix M, respectively. Additionally, we
define Cmin and Cmax to be positive constants such that

Cmin � λmin(
1
n

ᵀ(X)
(X)) < λmax(

1
n

ᵀ(X)
(X)) � Cmax

as n → ∞.

We impose these restrictions to avoid non-invertibility of
stock returns, characteristics, and rotation indeterminacy.

Assumption 3.

1
n

G(X)ᵀG(X) →P

⎡
⎢⎣

d1 0 0

0
. . . 0

0 0 dJ

⎤
⎥⎦ ,

as n → ∞, where dj are distinct and positive entries.

Both Assumption 2 and 3 are similar to those in Fan et al.
(2016), which are used to separately identify risk factors and
factor loadings. Given the orthogonal bases of B-splines and
uncorrelated or weakly correlated characteristics, Assumption 3
is mild.

Assumption 4. Kmin and Kmax are positive constants such that:

Kmin � λmin(
1
n

G(X)ᵀPG(X)) < λmax(
1
n

G(X)ᵀPG(X)) � Kmax

as n → ∞.

This assumption requires nonvanishing explanatory power
of the B-splines bases 
(X) on the factor loading matrix G(X).

Assumption 5. εit is realized iid idiosyncratic shocks with
E(εit) = 0 and var(εit) = σ 2.

Heteroscedasticity is caused by γi, namely, var(γi+εit) = σ 2
i .

6.2. Main Results

Theorem 6.1. Let F̂ be the T × J matrix estimate of latent risk
factors. Under Assumption 1–4, F̂ →P F, as n → ∞.

Theorem 6.2. Define the n × J matrix Ĝ(X) as the estimate of
factor loadings G(X). Under Assumption 1–4 and Theorem 6.2
, as n → ∞, then Ĝ(X) →P G(X).

Theorem 6.3. Let the PHn × 1 vector Â be the solution of
constrained OLS Equation (6), then

Â = QÃ,

where

Q = I − (
(X)ᵀ
(X))−1
(X)ᵀĜ(X)(Ĝ(X)ᵀĜ(X))−1Ĝ(X)ᵀ
(X),

Ã = 1
T

(
(X)ᵀ
(X))−1
(X)ᵀ(Y − Ĝ(X)F̂ᵀ)1T .

Under Assumption 1–4, 
(X)Â →P h(X), as n → ∞.

Theorem 6.4. Under Assumptions 3 and 5, E(Z|H0) =√
2 log PHn.

Theorem 6.5. Under n → ∞ and H0, given the properties of S0
and S1, then:

S|H0 →d N(0, 1),

the power of S is approaching 1 once the arbitrage characteristic
is selected as:

Pr(reject H0|M̂ �= ∅) → 1.

7. Numerical Study

In this section, we use Compustat and Fama-French three and
five factors data to simulate stock returns and then evaluate the
performance of our estimation and hypothesis test procedures.

7.1. Data Generation

First, we use Fama-French three factors monthly returns and all
the characteristics that will be included in the empirical study to
simulate the stock excess returns. Most of the characteristics are
updated annually so we treat those variables as time-invariant
during each one-year rolling block. For the characteristics that
are updated every month, we substitute the mean values as their
fixed values for each fiscal year. We use Fama-French monthly
returns from July of year t to June of year t+1 and characteristics
of fiscal year t −1 to generate the stock returns from July of year
t to June of year t + 1. The periods we generate are the same



JOURNAL OF BUSINESS & ECONOMIC STATISTICS 9

Ta
bl

e
1.

Si
m

ul
at

io
n

Re
su

lts
1

Pa
rt

1.

σ
2

=
1

σ
2

=
4

Li
ne

ar
M

od
el

Se
m

ip
ar

am
et

ric
M

od
el

Li
ne

ar
M

od
el

Se
m

ip
ar

am
et

ric
M

od
el

W
in

do
w

n
S

S 0
S 1

M
SE

Se
le

ct
ed

%
D

ist
or

tio
n%

S
S 0

S 1
M

SE
Se

le
ct

ed
%

D
ist

or
tio

n%
S

S 0
S 1

M
SE

Se
le

ct
ed

%
D

ist
or

tio
n%

S
S 0

S 1
M

SE
Se

le
ct

ed
%

D
ist

or
tio

n%

1
46

8
24

.9
11

.5
13

.4
6.

4
10

0%
10

0%
-0

.5
6.

2
-5

.7
6

81
.2

%
0%

14
.2

10
.8

3.
4

8.
6

10
0%

87
.4

%
-8

.2
0

-8
.2

8.
1

0%
0%

2
89

4
32

.8
11

.6
21

.2
2

10
0%

10
0%

3.
4

8
-4

.6
1.

6
99

.9
%

0%
11

.4
5.

8
5.

6
4.

3
10

0%
2.

1%
-8

.5
0

-8
.5

3.
7

0%
0%

3
11

08
34

.4
5.

7
28

.7
11

.9
10

0%
0%

8.
6

9
-0

.4
11

.5
10

0%
0%

17
.1

5.
7

11
.4

14
.1

10
0%

0%
-7

0.
7

-7
.7

13
.7

7.
3%

0%
4

11
99

-0
.5

7
0

-0
.5

7
10

.2
0%

0%
9.

2
9.

1
0.

1
9.

5
96

.8
%

4.
3%

-1
.4

0
-1

.4
12

.5
0%

0%
-6

.1
0.

06
-6

.2
7%

0%
5

13
33

92
19

.6
72

.4
2.

31
10

0%
10

0%
10

.6
9

1.
6

2
10

0%
0%

28
.2

6.
1

22
4.

5
10

0%
6.

5%
0.

2
7.

4
-7

.2
4.

1
82

.8
%

0%
6

14
09

90
28

.5
61

.5
16

10
0%

10
0%

28
.6

12
.6

15
.9

15
.8

10
0%

28
%

45
.3

16
.1

29
.2

18
.4

10
0%

73
.4

%
16

.3
10

.9
5.

4
17

.5
68

.4
%

35
.9

%
7

14
66

78
.4

10
.6

67
.8

6.
4

10
0%

74
.2

%
19

.5
9

10
.5

6.
2

10
0%

0%
34

.8
5.

7
29

.1
8.

6
10

0%
0.

02
%

4.
3

9
-4

.7
8.

4
99

.9
%

0%
8

15
60

13
3

16
.8

11
6.

2
3.

3
10

0%
10

0%
20

.3
10

10
.3

3.
2

10
0%

0%
45

.2
6.

1
39

.1
5.

5
10

0%
6.

9%
4.

2
10

-5
.8

5.
4

10
0%

0%
9

14
94

11
7.

7
13

.6
10

4.
1

3.
6

10
0%

10
0%

23
.1

9
14

.1
3.

5
10

0%
0%

44
.1

7.
6

36
.5

5.
8

10
0%

32
.4

%
6

9
-3

5.
6

10
0%

0.
1%

10
12

92
90

.7
11

.5
79

.2
3.

7
10

0%
10

0%
16

.2
9

7.
2

3.
6

10
0%

0%
39

.5
9.

3
30

.2
5.

9
10

0%
61

.1
%

3.
6

8.
9

-5
.3

5.
7

99
.7

%
0%

11
13

93
84

.7
10

.6
74

.1
6.

1
10

0%
85

.1
%

20
.7

9.
1

11
.6

5.
8

10
0%

1.
1%

37
.1

6.
5

30
.6

8.
3

10
0%

12
.9

%
8.

9
8.

9
0

7.
8

98
.1

%
1.

3%
12

13
40

83
.5

28
55

.5
2.

38
10

0%
10

0%
10

.6
9

1.
6

2
10

0%
0%

26
6.

2
19

.8
4.

6
10

0%
7.

1%
-1

.8
5.

7
-7

.5
4.

1
63

.7
0%

13
12

85
11

3.
8

16
97

.8
1.

73
10

0%
10

0%
10

.6
9

1.
6

1.
6

10
0%

0%
34

.5
6.

6
27

.9
4

10
0%

15
.3

%
-2

.4
5.

1
-7

.5
3.

7
57

.1
%

0%
14

11
81

88
.5

12
.8

75
.7

4.
7

10
0%

10
0%

15
.8

9
6.

8
4.

5
10

0%
0%

31
.2

5.
9

25
.3

6.
9

10
0%

2.
3%

3.
7

9
-5

.3
6.

6
10

0%
0%

15
11

10
45

.7
7.

5
38

.1
8.

9
10

0%
30

.4
%

11
.5

9
2.

5
8.

7
10

0%
0%

23
.9

5.
8

18
.1

11
.1

10
0%

0.
6%

-2
4.

8
-6

.8
10

.8
0.

54
%

0%
16

10
44

20
.5

5.
7

14
.8

18
.4

10
0%

0%
9.

9
9

0.
9

17
.9

10
0%

0%
14

.6
5.

7
8.

9
20

.6
10

0%
0%

1.
2

6.
1

-4
.9

20
68

.1
%

0.
2%

17
11

25
59

.4
11

.5
47

.9
9.

2
10

0%
10

0%
13

.2
9

4.
2

9
10

0%
0%

27
.2

6.
2

21
11

.5
10

0%
8.

4%
2.

6
8.

8
-6

.2
11

97
.9

%
0%

18
21

92
N

A
N

A
N

A
N

A
N

A
N

A
23

.2
11

12
.2

4.
3

10
0%

0%
N

A
N

A
N

A
N

A
N

A
N

A
6.

7
11

-4
.3

6.
4

10
0%

0%
19

22
36

56
.1

11
.5

44
.6

5.
8

10
0%

10
0%

17
.8

11
6.

8
5.

2
10

0%
0%

28
.3

6.
3

22
8

10
0%

20
.3

%
4.

3
11

-6
.7

7.
4

10
0%

0%
20

22
73

43
.3

5.
7

37
.6

3.
8

10
0%

0%
22

.4
11

11
.4

3.
2

10
0%

0%
22

.4
5.

7
16

.7
6.

1
10

0%
0%

5
10

.2
-5

.2
5.

4
92

.6
%

0%
21

22
35

59
.8

11
.8

48
2.

7
10

0%
10

0%
20

.2
11

9.
2

2
10

0%
0%

25
7.

3
17

.7
4.

9
10

0%
28

.2
%

4.
6

11
-6

.4
4.

2
10

0%
0%

22
22

70
40

.2
11

.5
28

.7
2.

78
10

0%
99

.5
%

17
.2

11
.6

5.
6

2.
1

10
0%

0%
17

.1
5.

9
11

.2
5

10
0%

3.
5%

-6
0.

1
-6

.1
4.

2
1.

1%
0%

23
24

05
41

.4
8.

9
32

.5
4.

1
10

0%
54

.2
%

16
.3

11
5.

3
3.

3
10

0%
0%

18
.7

5.
8

12
.9

6.
3

10
0%

7.
1%

-3
.3

3
-6

.3
5.

5
27

.3
%

0%
24

23
76

19
9.

7
9.

3
1.

8
10

0%
69

.9
%

23
.1

11
12

.1
1

10
0%

0%
7.

5
5.

7
1.

8
4

10
0%

0%
5.

6
11

-5
.4

3.
2

10
0%

0%
25

23
23

15
.9

9.
5

6.
4

3.
5

66
.7

%
98

.6
%

20
.6

11
9.

6
2.

7
10

0%
0%

1.
1

0
1.

1
5.

8
0%

0%
5.

3
11

-5
.7

4.
9

10
0%

0%
26

23
44

N
A

N
A

N
A

N
A

N
A

N
A

24
.9

12
.9

12
3.

3
10

0%
17

.1
%

N
A

N
A

N
A

N
A

N
A

N
A

6.
5

11
-4

.5
5.

4
10

0%
0%

27
24

34
N

A
N

A
N

A
N

A
N

A
N

A
27

.3
11

16
.3

1.
2

10
0%

0%
N

A
N

A
N

A
N

A
N

A
N

A
6.

9
11

-4
.1

3.
4

10
0%

0%
28

25
48

0.
9

0
0.

9
4.

2
0%

0%
26

.2
11

15
.2

3.
3

10
0%

0%
-1

.3
0

-1
.3

6.
5

0%
0%

6.
9

11
-4

.1
5.

5
10

0%
0%

29
27

41
10

.3
5.

7
4.

5
4.

2
10

0%
0%

58
.2

11
.1

47
.1

3.
4

10
0%

1.
3%

6.
6

5.
7

0.
9

6.
4

10
0%

0%
17

.6
11

6.
6

5.
5

10
0%

0%
30

29
28

5.
6

4.
6

1
7.

1
80

.4
%

0%
59

.2
11

.8
47

.4
6.

3
10

0%
7.

8%
-0

.4
0.

1
-0

.5
9.

3
2.

5%
0%

18
.8

11
7.

8
8.

5
10

0%
0.

3%
31

28
94

13
.4

5.
7

7.
7

6.
4

10
0%

0%
61

13
.4

47
.6

5.
7

10
0%

21
.6

%
8.

1
5.

7
2.

3
8.

6
10

0%
0%

17
.7

11
6.

7
7.

8
10

0%
0.

2%
32

29
05

23
.1

11
.5

11
.6

5.
9

10
0%

10
0%

33
.2

11
.3

21
.9

5.
2

10
0%

3%
12

.9
8.

5
4.

4
8.

1
10

0%
48

.2
%

9.
8

11
-1

.2
7.

4
10

0%
0%

33
28

04
9.

8
5.

7
4.

1
9.

6
10

0%
0%

42
.7

18
.5

24
.2

8.
9

10
0%

68
.5

%
7.

3
5.

7
1.

6
11

.9
10

0%
0%

9.
7

11
-1

.3
11

.2
10

0%
0%

34
25

70
6.

9
5.

7
1.

2
22

99
.7

%
0%

37
.3

12
.2

25
.1

21
.2

10
0%

10
.4

%
2

1.
9

0.
1

24
34

.4
%

0%
12

.7
11

1.
7

23
.3

10
0%

0.
2%

35
25

16
8.

3
5.

7
2.

6
7.

9
10

0%
0%

41
.3

11
30

.3
7.

2
10

0%
0.

4%
5.

1
5.

02
0.

08
10

.1
87

.3
%

0%
12

.9
11

1.
9

9.
4

10
0%

0%
36

24
91

10
.7

5.
7

4.
9

2.
1

10
0%

0%
41

.3
11

30
.3

1.
4

10
0%

0.
4%

0.
5

0.
25

0.
25

4.
4

4.
5%

0%
12

.4
11

1.
4

3.
6

10
0%

0%
37

24
02

14
.1

5.
7

8.
4

5.
6

10
0%

0%
26

.5
11

.2
15

.3
4.

9
10

0%
2.

2%
8.

8
5.

7
3.

1
7.

9
10

0%
0%

7.
9

11
-3

.1
7.

1
10

0%
0%

38
23

26
19

.7
9.

6
10

.1
3

10
0%

66
.8

%
28

.9
11

.3
17

.6
2.

3
10

0%
2.

1%
8.

1
5.

8
2.

3
5.

3
10

0%
0.

3%
8.

7
11

-2
.3

4.
4

99
.9

%
0.

1%
39

22
41

17
5.

7
16

.1
2.

9
10

0%
0.

2%
11

11
0

1.
7

10
0%

0%
9.

1
5.

8
2.

3
5.

3
10

0%
0.

3%
-7

.5
0.

1
-7

.6
4

1.
1%

0%
40

21
78

21
.8

5.
7

16
.1

2.
9

10
0%

0%
9.

5
11

-1
.5

2.
2

10
0%

0.
3%

12
.2

5.
7

6.
5

5.
2

10
0%

0%
-8

.1
0

-8
.1

4.
4

0%
0%



10 S. GE ET AL.

Ta
bl

e
2.

Si
m

ul
at

io
n

Re
su

lts
1

Pa
rt

2.

σ
2

=
1

σ
2

=
4

Li
ne

ar
m

od
el

Se
m

ip
ar

am
et

ric
m

od
el

Li
ne

ar
m

od
el

Se
m

ip
ar

am
et

ric
m

od
el

W
in

do
w

n
S

S 0
S 1

M
SE

Se
le

ct
ed

%
D

ist
or

tio
n%

S
S 0

S 1
M

SE
Se

le
ct

ed
%

D
ist

or
tio

n%
S

S 0
S 1

M
SE

Se
le

ct
ed

%
D

ist
or

tio
n%

S
S 0

S 1
M

SE
Se

le
ct

ed
%

D
ist

or
tio

n%
41

21
13

24
.1

6.
1

18
4.

7
10

0%
7.

5%
7.

8
10

-2
.2

3.
9

10
0%

0%
13

.9
5.

7
8.

2
6.

9
10

0%
0%

-8
.1

0
-8

.1
6.

1
0%

0%

42
20

23
18

.4
5.

7
12

.7
6.

8
10

0%
0%

11
.3

10
1.

3
6

10
0%

0%
10

.8
5.

8
5.

1
9

10
0%

0%
-7

.1
0.

3
7.

4
8.

2
2.

7%
0%

43
20

07
18

.8
5.

7
13

.1
4.

9
10

0%
0%

9.
1

10
-0

.9
4.

1
10

0%
0%

10
.5

5.
7

4.
8

7.
1

10
0%

0%
-8

.3
0

-8
.3

6.
3

0%
0%

44
19

24
16

.6
5.

8
10

.8
8.

18
10

0%
0.

2%
13

.6
10

.8
2.

8
7.

5
10

0%
8%

11
.2

5.
8

5.
4

10
.4

10
0%

0.
3%

-3
.5

2.
7

-6
.2

9.
7

26
.3

%
0.

2%
45

19
90

27
.5

5.
7

21
.8

2.
1

10
0%

0%
8.

1
10

-1
.9

1.
4

10
0%

0%
13

.3
5.

7
7.

5
4.

4
10

0%
0%

-8
0

-8
3.

6
0%

0%
46

19
37

20
.3

5.
8

14
.5

5.
4

10
0%

0.
9%

19
.7

11
.8

7.
9

4.
7

10
0%

18
%

12
.6

5.
9

6.
7

7.
6

10
0%

3%
8

11
.2

-3
.2

6.
8

10
0%

12
.3

%
47

19
09

13
.2

5.
7

7.
5

5.
2

10
0%

0%
14

.2
10

.4
3.

8
4.

5
10

0%
3.

5%
8.

8
5.

7
3.

1
7.

4
10

0%
0%

2.
7

8.
4

-5
.7

6.
7

84
.9

%
0%

48
18

72
21

.8
5.

7
16

.1
2.

7
10

0%
0%

11
.4

10
1.

4
2

10
0%

0%
11

.1
5.

8
5.

3
4.

9
10

0%
0%

-6
.8

0.
6

-7
.4

4.
2

5.
7%

0%
49

18
41

16
.3

5.
7

10
.5

2.
1

10
0%

0%
8.

7
10

-1
.3

1.
4

10
0%

0.
1%

8.
1

5.
7

2.
4

4.
4

10
0%

0%
-8

.4
0

-8
.4

3.
6

0%
0%

50
18

26
11

5.
7

5.
3

4.
3

10
0%

0%
12

.6
10

.6
2

3.
5

10
0%

3.
5%

6.
5

5.
7

0.
8

6.
6

99
.7

%
0.

3%
-6

.9
0

-6
.9

5.
7

0%
0%

N
OT

ES
:T

hi
st

ab
le

do
cu

m
en

ts
re

su
lts

un
de

rt
he

ch
ar

ac
te

ris
tic

s-
ba

se
d

be
ta

an
d

al
ph

a
of

Fa
m

a-
Fr

en
ch

3
fa

ct
or

sm
od

el
.T

o
m

im
ic

th
e

em
pi

ric
al

st
ud

y,
w

e
sim

ul
at

ed
50

12
-m

on
th

ro
lli

ng
w

in
do

w
s,

an
d

ea
ch

w
in

do
w

is
re

pe
at

ed
fo

r1
00

0
tim

es
.

Ea
ch

co
lu

m
n

su
m

m
ar

ise
st

he
m

ea
n

va
lu

e
of

10
00

es
tim

at
io

ns
an

d
te

st
re

su
lts

.S
1

is
th

e
co

nv
en

tio
na

lW
al

d
te

st
w

hi
le

S 0
is

th
e

po
w

er
-s

tr
en

gt
he

ne
d

co
m

po
ne

nt
.T

hi
st

ab
le

al
so

co
m

pa
re

st
he

pe
rfo

rm
an

ce
of

bo
th

se
m

ip
ar

am
et

ric
an

d
lin

ea
rm

od
el

su
nd

er
di

ffe
re

nt
no

ise
le

ve
ls,

σ
2

=
1

an
d

σ
2

=
4.

N
A

re
su

lts
ar

e
ca

us
ed

by
no

n-
in

ve
rt

ib
le

ch
ar

ac
te

ris
tic

m
at

ric
es

.“
Se

le
ct

ed
”m

ea
ns

th
e

pe
rc

en
ta

ge
of

se
le

ct
in

g
th

e
re

le
va

nt
ch

ar
ac

te
ris

tic
in

th
e

m
isp

ric
in

g
fu

nc
tio

n
in

10
00

ex
pe

rim
en

ts
.S

im
ila

rly
,“

di
st

or
tio

n”
re

pr
es

en
ts

th
e

pe
rc

en
ta

ge
of

w
ro

ng
ly

se
le

ct
in

g
irr

el
ev

an
tc

ha
ra

ct
er

ist
ic

si
n

10
00

re
pe

tit
io

ns
.

as the empirical study, namely, 50 years from July 1967 to June
2017. For each rolling block with 12 months, we have

yit = h(Xi) +
3∑

j=1
gj(Xij)fjt + εit , (7)

yit is the generated stock’s return; h(Xi) is the mispricing func-
tion consisting of a nonlinear characteristic function of xi, which
is to mimic the sparse structure of the mispricing function;
gj(Xij) is the jth characteristics-based factor loading, which
has an additive semiparametric structure; Xij is the jth subset
consisting of 4 characteristics; fjt is the jth Fama-French factor
returns at time t; εit is the idiosyncratic shock for stock i at time
t, generated from N(0, σ 2).

We generate characteristic functions

h(Xi) = sin Xi,

gj(Xij) = X2
ij1 + (3X3

ij2 − 2X2
ij2) + (3X3

ij3 − 2Xij3) + X2
ij4,

where Xijl is a randomly picked characteristic without replace-
ment from the data in empirical study and j = 1, 2, 3 , l =
1, . . . , 4. A description of these characteristics can be found
in the appendix. Additionally, all h(Xi), gj(Xij) are adjusted
to have zero mean and unit variance. As we use real data to
conduct the simulation, the Assumption of independent X may
not be satisfied. Although some characteristics are correlated,
the semiparametric model overcomes this problem properly
when compared with the parametric model that has serious size
distortion.

We do not specify h(Xi) and gj(Xij) to be orthogonal
explicitly, but we draw characteristics without replacement
and employ sine-waves and polynomials to approximate the
orthogonality as much as possible. In this simulation, our
method can only estimate the component of h(Xi) that is
orthogonal to gj(Xij). However, results reveal that one can still
select the arbitrage characteristics even if we cannot estimate
arbitrary h(Xi) unrestrictively.

7.2. Model Misspecification

In this subsection, we show the necessity to consider semipara-
metric analysis when the forms of factor loadings and mispric-
ing functions are nonlinear.

Under the data generation process, we consider both semi-
parametric and linear analysis to compare Mean Squared Error
(MSE) and hypothesis test results under both specifications.
We apply our estimation methodology in Section 3 to estimate
Equation 7. For semiparametric specification, we choose the
number of B-splines bases to be �n0.3�. n is the number of assets
in each balanced rolling window, and �·� means the nearest inte-
ger. We orthogonalize these bases, and then use the Projected-
PCA and restricted OLS to estimate model Equation (7). As
for the hypothesis test part, we choose threshold value to be
ηn = Hn

√
2 log(PHn) = �n0.3�√2 log(P�n0.3�), where P is the

number of characteristics, and n is the number of stock in each
rolling block. For the linear specification, each characteristic
only has one basis, which is itself. In terms of the hypothesis test,
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we use the same logic as in the semiparametric settings, and we
set ηn = √

3 log(P).
In all the estimation above, we assume that we know the real

number of factors, which is three. We will discuss the situation
when the number of factors is unknown in the next subsection.
Mean Squared Error (MSE) is also reported to compare the
fitness of models (Equation (7)).

From Table 1, under different noise levels, namely σ 2 = 1
and σ 2 = 4, the semiparametric model outperforms the linear
model in the following aspects:

1. The fitness of the semiparametric model is much better than
the linear model, which can be illustrated from MSE.

2. The semiparametric model can enhance the power of S1 by
non-zero S0, which can not only select the correct mispricing
characteristics but also avoid size distortions. As for the
linear model, it is influenced by the correlated characteristics.
Therefore, during certain periods we even obtain the non-
invertible characteristic matrix. The linear model can also
select the relevant covariates with decent probability, but it
suffers from serious size distortions. In contrast, our semi-
parametric model with orthogonal bases can mitigate this
problem to a great extent.

3. Because S1 can be very small and even negative, especially
when the noise σi is strong, the additional component S0
is necessary to strengthen the power of S1 and to select
the relevant characteristics that can explain the mispricing
function.

7.3. Robustness Under Stronger Noise

In Table 1, we set two different noise levels of random shocks,
namely σ 2 = 1 and σ 2 = 4. Although σ 2 = 1 is closer
to the empirical data, we conduct this comparison to show
the robustness of our methods. When the noise level becomes
three times bigger, the accuracy of power-enhanced tests gets
much lower for certain windows. However, there are no size
distortions under comparatively high noise level recalling that
all the components of our simulation model are rescaled to
have unit variance. Another fact is that the stronger noise does
deteriorate the power of conventional Wald tests, leading to
an even smaller value of S1, which can be mitigated through
adding S0.

Therefore, we conclude that our methods are robust to
a higher noise level regarding no size distortions. However,
the accuracy of selecting relevant components and the role
of enhancing the power of hypothesis tests will be influenced
negatively.

7.4. Number of Factors

In the empirical study, the number of factors is unknown. There-
fore, in this subsection, we will study whether our methodology
is robust to a various numbers of factors considered.

We simulate according to another data-generation process

yit = h(Xi) +
5∑

j=1
gj(Xij)fjt + εit , (8)
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similarly, yit is the generated stock return; h(Xi) is the mispricing
function consisting of a nonlinear characteristic function of
Xi, to mimic the sparse structure of the mispricing function;
gj(Xij) is the jth characteristics-based factor loading, which has
an additive semiparametric structure; Xij is a subset consisting
of four characteristics; fjt is the j Fama-French 5-factor returns
at time t; εit is the idiosyncratic shock, generated from N(0, σ 2).
Moreover, we generate characteristic functions as follows:

h(Xi) = sin Xi,

gj(Xij) = X2
ij1 + (3X3

ij2 − 2X2
ij2) + (3X3

ij3 − 2Xij3) + X2
ij4,

where Xijl is a randomly picked characteristic without replace-
ment from the data in empirical study with j = 1, . . . , 5 , l =
1, . . . , 4. Furthermore, all h(Xi) and gj(Xij) are adjusted to have
zero mean and unit variance.

Given the above data-generation process, we test the influ-
ence of over and under-estimated number of factors. We choose
the number of factors to be either three or five, and compare
the results in Table 3. The first category column is the scenario
of over estimating the number of factors. We simulate the data
generation process using the Fama-French three factors model,
but estimate the number of factors to be five. However, this
does not cause any serious problems. For some rolling blocks,
the probability of mistakenly selected irrelevant characteristics
is slightly higher under over estimating the number of factors.
Moreover, over estimating the number of factors can increase
the model fitting marginally. Therefore, we conclude that over
estimating the number of factors does not cause severe size
distortion using our methods.

On the other hand, under estimating the number of factors
can lead to misleading test results. We can conclude this from the
last several columns where we estimate the number of factors to
be three in a five-factor model. Compared with the correct spec-
ified model, under estimating causes not only higher MSE, but
also higher distortions, which means it is more likely to select
irrelevant characteristics. Therefore, in the empirical study we
prefer the five-factor model rather than the three-factor model.

8. Empirical Study

8.1. Data

We use monthly stock returns from CRSP and firms’ charac-
teristics from Compustat, ranged from 1965 to 2017. We con-
struct 33 characteristics following the methods of Freyberger
et al. (2020). Details of these characteristics can be found in
the Appendix. We use characteristics from fiscal year t − 1 to
explain stock returns between July of year t to June of year
t + 1. After adjusting the dates from the balance sheet data,
we merge two datasets from CRSP and Compustat. We require
all firms included in our analysis to have at least three years of
characteristics data in Compustat.

Data is modified with regards to the following aspects:

1. Delisting is quite common for CRSP data. We use the way
of Hou et al. (2015) to correct the returns of all delisted
assets before 2018. Detailed methods can be found in their
appendix.

2. Projected-PCA works well, even under small T circum-
stances. Thus, we choose the width of our window to be
12 months. Another reason for the short window width is
that we assume that mispricing functions are time-invariant
in each window. One of the limitations of Projected-PCA is
that it can only be used for a balanced panel, which means the
number of stock will vary when we applied one-year rolling
windows to obtain a short-time balanced panel. Meanwhile,
we take monthly updated characteristics’ mean values of 12
months as fixed characteristic values in each window. We
also use the rolling window method to detect peer groups of
arbitrage characteristics.

3. B-splines are based on each time-invariant characteristic of
n firms, which are not delisted in each window.

4. Rolling windows are moving at a 12-month step from July
1967 to June 2017 without overlapping. The first 24-month
returns are not included as they do not have corresponding
characteristics.

5. Excess returns are obtained by the difference between
monthly stock returns and monthly Fama-French risk-free
returns.

8.2. Estimation

We construct B-splines bases based on evenly distributed knots,
and the degree of each basis is three. We choose Hn = �n0.3�,
and n is the number of stocks. To get a relatively large balanced
panel in each window, some characteristics with too many miss-
ing values are eliminated. Therefore, only 33 characteristics are
left. Firms kept in balanced panels in our dataset range from
468 to 2928, which means that both n and Â ∈ R

PHn are
diverging. Large n can satisfy asymptotic requirements. These
facts emphasize the necessity of introducing a power-enhanced
component into the hypothesis test. Before the next step, we use
time-demeaning matrix DT to demean excess return matrix in
each window.

Next, we project the time-demeaned monthly excess return
matrix Ỹ onto the B-splines space spanned by characteristics
bases 
(X), and then we collect the fitted values Ŷ . We apply
principal component analysis on 1

n ŶᵀŶ , and attain the first five
eigenvectors corresponding to the first five biggest eigenvalues
as the estimates of unobservable factors F. We choose the num-
ber of factors to be five according to simulation results.

Then, we estimate the factor loading matrix by:

Ĝ(X) = ŶF̂(F̂ᵀF̂)−1.

Moreover, we use equality-constrained OLS to estimate the
mispricing function. We project excess monthly return matrix
on the characteristic space 
(X) that is orthogonal to factor
loading matrix Ĝ(X).

Another goal of this article is to conduct a power-enhanced
test on the mispricing function. Therefore, our final step is to
estimate the covariance matrix  of Â.

8.3. Power-Enhanced Hypothesis Tests

In this section, we conduct a power-enhanced test in each rolling
block. First, we set threshold value for each window, ηn =
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�n0.2�√2 log(PHn), where Hn is the number of bases for each
characteristic whereas P is the number of total characteristics in
each window, with P = 33. ηn is data-driven critical value and
it diverges as the number of firms increases. We use indicator
function I(

∑Hn
h=1 |α̂ph|/σ̂ph � ηn) to achieve three goals.

1. This indicator function selects the most relevant character-
istics that can explain the variation of the mispricing func-
tion. Results of the last column in Table 5 are characteristics
selected in M̂ = {Xp ∈ X :

∑Hn
h=1 |α̂ph|/σ̂ph � ηn, p =

1, 2, . . . , P}.
2. It contributes to the test statistic S by adding a diverging

power-enhanced component S0. As T = 12 is small in this
empirical study, we assume the homoscedasticity of εit + γi.
We also specify an over-shrunk covariance matrix by setting
off-diagonal elements to be zeros.

3. It avoids size-distortion by the conservative critical value ηn.

The diagonal elements of �̂ are estimated variances of mis-
pricing coefficients. These elements can be substituted into the
indicator function I(

∑Hn
h=1 |α̂ph|/σ̂ph � ηn), where σ̂ph is the

phth diagonal element of �̂.
Finally, the new statistic S can be calculated as follows:

S = S0 + S1,

S0 = Hn

P∑
p=1

I(
Hn∑

h=1
|α̂ph|/σ̂ph � ηn), S1 = Âᵀ�̂−1Â − PHn√

2PHn
.

8.4. Test Results

This section presents the empirical results. Details can be found
in Table 5, which lists the results of 50 rolling windows from
Jul.1967 to Jun.2017. Generally, the number of firms included in
the 12-month rolling block is increasing period by period. The
number of our characteristic B-splines bases is a function of the
number of firms n in each block. Therefore, the dimension of the
mispricing coefficient vector A ∈ RPHn is also diverging. This
verifies the necessity of using a power-enhanced component S0.

Recalling that S|H0 →d N(0, 1), some of the test statistics
S is big enough to reject the null hypothesis. However, for
some testing windows, there are no strong signals showing
the existence of characteristics-based mispricing functions after
subtracting systematic effects. Most S1 values are small and
even negative, which may be caused by the sparsity structure of
the mispricing function or/and the low power problems due to
diverging dimension of mispricing coefficients.

The power-enhanced component S0 works well in the empir-
ical study. It selects the most important explanatory character-
istics and strengthens the power of S1, mitigating the low power
problem.

Apart from contributing to the power of tests, the indicator
function in the power-enhanced component can also screen
out the most relevant characteristics, which are concluded as
“Characteristics Selected” in Table 5.

Some empirical findings are worth discussing. Although
short-term cumulative returns like r2_1 are always selected, we
cannot take this as the evidence of arbitrage opportunities since
we construct r2_1 as the time-invariant average of all r2_1 in

Table 5. Empirical study results.

Time period n S S0 S1 MSE Characteristics selected

Jul.1967–Jun.1968 468 −9.6 0 −9.6 0.005 NONE
Jul.1968–Jun.1969 951 −0.45 8 −8.45 0.004 r2_1
Jul.1969–Jun.1970 1108 1.7 9 −7.3 0.005 r2_1
Jul.1970–Jun.1971 1199 −8.7 0 −8.7 0.006 NONE
Jul.1971–Jun.1972 1333 −10 0 −10 0.004 NONE
Jul.1972–Jun.1973 1409 12.7 18 −5.3 0.005 r12_2,r6_2
Jul.1973–Jun.1974 1466 2.1 9 −6.9 0.005 r2_1
Jul.1974–Jun.1975 1560 −10.7 0 −10.7 0.01 NONE
Jul.1975–Jun.1976 1494 0.1 9 8.9 0.05 r2_1
Jul.1976–Jun.1977 1292 0.1 9 −9 0.004 r2_1
Jul.1977–Jun.1978 1393 −9.4 0 −9.4 0.005 NONE
Jul.1978–Jun.1979 1340 8.6 18 −9.4 0.005 r2_1,r12_7
Jul.1979–Jun.1980 1285 1 9 −8 0.005 r2_1
Jul.1980–Jun.1981 1181 9.7 18 −8.2 0.006 r12_7,r12_2
Jul.1981–Jun.1982 1110 1.2 9 −7.8 0.01 r2_1
Jul.1982–Jun.1983 1044 33.1 36 −3 0.01 r12_2,r12_7,r6_2,r2_1
Jul.1983–Jun.1984 1125 −0.9 9 −9.9 0.006 r2_1
Jul.1984–Jun.1985 2192 −0.2 11 −11.2 0.01 r2_1
Jul.1985–Jun.1986 2236 13.1 22 −8.94 0.01 r12_7,r12_2
Jul.1986–Jun.1987 2273 1.7 11 −9.3 0.01 PCM
Jul.1987–Jun.1988 2235 0.9 11 −10.1 0.01 r2_1
Jul.1988–Jun.1989 2270 1.2 11 −9.8 0.01 ROA
Jul.1989–Jun.1990 2405 −0.1 11 −11.1 0.01 r2_1
Jul.1990–Jun.1991 2376 1.1 11 −9.9 0.02 r2_1
Jul.1991–Jun.1992 2323 2.1 11 −8.9 0.02 r2_1
Jul.1992–Jun.1993 2344 12.2 22 −9.8 0.02 r12_7,r12_2
Jul.1993–Jun.1994 2434 0.4 11 −10.6 0.01 r2_1
Jul.1994–Jun.1995 2548 2.4 11 −8.6 0.01 r2_1
Jul.1995–Jun.1996 2741 14.1 22 −7.9 0.02 BEME,r2_1
Jul.1996–Jun.1997 2928 18.1 22 −3.9 0.01 BEME,r2_1
Jul.1997–Jun.1998 2894 26.5 33 −6.5 0.02 r2_1,r12_7,r12_2
Jul.1998–Jun.1999 2905 24.6 33 −8.4 0.02 AT,LME,r2_1
Jul.1999–Jun.2000 2804 13.8 22 −8.2 0.03 r2_1,r12_7
Jul.2000–Jun.2001 2570 37.7 44 −6.3 0.02 AT,LME, r2_1, r6_2
Jul.2001–Jun.2002 2516 1.3 11 −9.7 0.02 r2_1
Jul.2002–Jun.2003 2491 15 22 −7 0.02 Lev, r2_1
Jul.2003–Jun.2004 2402 3.9 11 −7.1 0.01 r2_1
Jul.2004–Jun.2005 2326 1.8 11 −9.2 0.01 IPM
Jul.2005–Jun.2006 2241 2.5 11 −8.5 0.01 r2_1
Jul.2006–Jun.2007 2178 1.5 11 −9.5 0.01 r2_1
Jul.2007–Jun.2008 2113 12.6 20 −7.4 0.01 r12_2,r2_1
Jul.2008–Jun.2009 2023 1.7 10 −8.3 0.02 r2_1
Jul.2009–Jun.2010 2007 1 10 −9 0.01 r2_1
Jul.2010–Jun.2011 1924 13.6 20 −6.4 0.01 r2_1
Jul.2011–Jun.2012 1990 2.5 10 −7.5 0.01 r2_1
Jul.2012–Jun.2013 1937 23.7 30 −6.3 0.01 r2_1,r12_7,r12_2
Jul.2013–Jun.2014 1909 2.3 10 −7.7 0.01 r2_1
Jul.2014–Jun.2015 1872 5.5 10 −4.5 0.01 r2_1
Jul.2015–Jun.2016 1841 12.4 20 −7.6 0.01 DelGmSale,r2_1
Jul.2016–Jun.2017 1826 26.1 30 −3.9 0.01 C2D,PCM,r12_7

NOTE: This table summarizes the empirical results, where n represents the num-
ber of stock in this rolling window.

the same rolling window, which contains much overlapping
information of monthly excess returns. However, this is not the
case for long-term and mid-term cumulative returns like r12_2,
r12_7 and r6_2, because these average returns include a lot of
information from another rolling window (Figure A.1).

Apart from the cumulative returns, some other characteris-
tics contribute to the arbitrage opportunities as well. PCM (price
to cost margin) appears twice. From Figure A.2, we find that
the PCM mispricing curve is nonlinear and generally decreasing
as the value of PCM increases. ROA (Return-On-Asset) also
plays a role during 1988–1989. It behaves like a parabola with
fluctuations near zero in Figure A.3. As for Lev (ratio of long-
term debt and debt in the current liabilities), it is decreasing for
Lev 0 and increasing afterward as in Figure A.7. In Figure A.8,
IPM (pretax profit margin) function behaves like a “V” shape
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with the turning point zero during 2004–2005. DelGmSale (dif-
ference in the percentage in Gross margin and the percentage
change in Sales) experiences a bump at zero during 2015–
2016 in Figure A.9. C2D (cash flow to price) curve behaves
like “V” around the zero in 2016-2017, (see Figure A.10). All
characteristics curves in the above figures are standardized as
uniformly distributed characteristics in the interval [−100, 100].
This is for presentation purposes only since most characteristics
are unevenly distributed.

Another finding is the persistence of some arbitrage char-
acteristics. Arbitrage characteristics can be persistent for two
years once appeared, such as BEME (ratio of the book value
of equity and market value of equity) in Figure A.4. Some
persistent arbitrage characteristics even have similar shapes of
mispricing functions in different rolling windows, such as AT
(Total asset) in Figure A.6 and LME (total market capitalization
of the previous month) in Figure A.5.

8.5. Dynamic Peer Groups of Arbitrage Characteristics

In this section, we illustrate that there are distinguishable peer
groups of the same arbitrage characteristic resulting in similar
mispricing returns. We apply the methods in Section 5 and take
two rolling windows, namely, Jul.1986– Jun.1987 and Jul.2004–
Jun.2005 as demonstrative examples.

In the rolling window July1986–June 1987, PCM is selected
as the only arbitrage characteristic that can explain arbitrage

returns. We reveal that similar characteristic-based arbitrage
returns are determined by distinguishable groups of the charac-
teristic PCM. We first divide arbitrage returns ÿit into different
return groups. And then, we detect whether there are some
clustering structures within groups of the highest and the lowest
characteristic-based arbitrage returns, respectively. As we have
2326 assets, for the visualization purpose, we set the threshold
value of the K-means method to be relatively small to have as
many as ten groups.

In Table 6, Group 2 has the largest positive average return
while Group 6 has the worst. Next, we detect the clusterings of
characteristic “PCM” within each group individually, which is
the second layer in Section 5.

In Table 7, there are two clusterings of PCM that provide the
highest positive characteristic-based arbitrage returns. Group
2.2, which has an extreme negative PCM value but a high
characteristic-based arbitrage return, is an outlier. Members in
group 2.1 with excellent arbitrage performance have positive
and small PCM values.

Table 8 gives groups of PCM in group 6. Members of this
group are divided into two clusterings. Group 6.1 has a relatively
large PCM value, while Group 6.2 has a smaller PCM, which
is close to that in group 2.1 with the highest arbitrage return.
This is an evident illustration of the nonlinear structure of h(X)

in this window. The structure of characteristic-based arbitrage
returns during July 1986– June 1987 is:

The classification can be found at Figure A.11, where assets
are labeled by their “PERMNO,” and both axes are rescaled.

Another example is the characteristic-based arbitrage return
ÿit during the year 2004–2005. The power-enhanced test selects
characteristic “IPM” as the only explanatory variable.

We apply the Hierarchical K-means method. The results of
the first layer classification can be found in Table 9. There are
ten groups in total according to the similarity of characteristic-

based arbitrage returns. Next, we pick two groups with the
highest and the lowest returns, respectively, to give clusterings
of “IPM” in these two groups.

Similarly, we show classification results in Tables 10 and 11
. Positive IPM values give higher characteristic-based arbitrage
returns. On the contrary, when IPM is close to zero or negative,
the characteristic-based arbitrage returns fall into the lowest
group (Group 8).
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The plots of the IPM can be found at Figure A.12, where the
axes are rescaled, and assets are labeled by their “PERMNO”
code with five digits.

Finally, it is obvious that peer groups of arbitrage character-
istics are dynamic in two aspects. First, the selected arbitrage
characteristics are time-varying. Although some of the arbitrage
characteristics can show up for more than one block once they
appeared, no arbitrage characteristic can be substantially persis-
tent. Second, as in Figure A.4, the same arbitrage characteristic
can have different functional forms in various rolling windows.
However, the patterns of some characteristics show persistence
in different time periods, such as AT in Figure A.6 and LME in
Figure A.5. In a word, under the flexible semiparametric setting,
methods for constructing arbitrage portfolio in Kim et al. (2021)
are inapplicable, although the characteristics-based mispricing
function is significant for certain time periods.

Table 6. First layer 1986–1987 (clusterings of ÿit ).

Group number Group centroid Group size

1 0.0059 435
2 0.1205 26
3 −0.0082 428
4 0.0399 189
5 0.0697 71
6 −0.1018 29
7 −0.0617 110
8 −0.0390 250
9 −0.0225 349

10 0.0208 386

Table 7. Second layer 1986-1987 (clusterings of characteristic
PCM).

Group Centroids of Arbitrage Centroids Group
number returns of PCM size

2.1 0.1211 0.2452 25
2.2 0.1039 −7.630 1

Table 8. Second layer 1986-1987 (clusterings of characteristic
PCM).

Group Centroids of Arbitrage Centroids Group
number returns of PCM size

6.1 −0.1085 0.728 9
6.2 −0.0989 0.288 20

Table 9. First layer 2004–2005 (clusterings of ÿit ).

Group number Group centroid Group size

1 0.0421 276
2 0.0059 459
3 0.1537 26
4 −0.024 367
5 0.0659 166
6 0.023 387
7 0.0999 120
8 −0.0758 67
9 −0.0437 244

10 −0.0082 436

Table 10. Second layer 2004–2005 (clusterings of characteris-
tic IPM)

Group Centroids of Arbitrage Centroids Group
number returns of PCM size

3.1 0.1681 0.266 5
3.2 0.1502 0.143 21

Table 11. Second layer 2004–2005 (clusterings of character-
istic IPM).

Group Centroids of arbitrage Centroids Group
number returns of PCM size

8.1 −0.0713 −0.07 10
8.2 −0.1016 −0.134 57

9. Conclusion

We proposed a semiparametric characteristics-based factor
asset pricing model, with a focus on the existence and the struc-
ture of the mispricing function. Both unknown characteristics-
based factor loadings and the mispricing component are
approximated by B-splines sieve. The model is estimated by both
Project-PCA and equality-constrained OLS. We also develop a
power-enhanced test to investigate whether there are mispricing
characteristics, orthogonal to the main systematic factors. This
is necessary because when the B-splines coefficients of the
mispricing function are diverging, the conventional Wald test
has very low power. The traditional Wald test is strengthened
by a screening process, which adds significant components
to the original statistic. Our proposed methods work well for
both simulations and the U.S. stock market. Empirically, we
find distinct clusterings of the same characteristics resulting in
similar arbitrage returns, forming “peer groups.” The mispricing
functions are time-varying and mostly insignificant under our
setting.
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Appendix

A1. Characteristic Description

Table A.1. Characteristic details.

Name Description Reference

A2ME We define assets-market cap as total assets (AT) over market capitalization as of December
t-1. Market capitalization is the product of shares outstanding (SHROUT) and price(PRC).

Bhandari (1988)

AT Total assets (AT) Gandhi and Lusting (2015)
ATO Net sales over lagged net operating assets. Net operating assets are the difference

between operating assets and operating liabilities. Operating assets are total assets (AT)
minus cash and short-term investments (CHE), minus investment and other advances
(IVAO). Operating liabilities are total assets (AT), minus debt in current
liabilities(DLC),minus long-term debt (DLTT),minus minority interest (MIB), minus
preferred stock (PSTK), minus common equity (CEQ).

Soliman(2008)

BEME Ratio of book value of equity to market value of equity. Book equity is shareholder equity
(SH) plus deferred taxes and investment tax credit (TXDITC), minus preferred stock (PS).
SH is shareholder’s equity (SEQ). If missing, SH is the sum of common equity (CEQ) and
preferred stock (PS). If missing, SH is the difference between total assets (AT) and total
liabilities (LT). Depending on availability, we use the redemption (item PSTKRV),
liquidating (item PSTKL), or par value (item PSTK) for PS. The market value of equity is as
of December t-1. The market value of equity is the product of shares outstanding
(SHROUT) and price (PRC).

Rosenberg, Reid and Lanstein (1985)
Davis, Fama, and French (2000)

C Ratio of cash and short-term investments (CHE) to total assets (AT)
C2D Cash flow to price is the ratio of income and extraoridinary items (IB) and depreciation and

amortization (dp) to total liabilities (LT).
CTO We define caoital turnover as ratio of net sales (SALE) to lagged total assets (AT). Haugen and Baker (1996)
Debt2P Debt to price is the radio of long-term debt (DLTT) and debt in current liabilities (DLC) to

the market capitalization as of December t-1 . Market capitalization is the product of
shares outstanding (SHROUT) and price (PRC).

Litzenberger and Ramaswamy (1979)

�ceq The percentage change in the book value of equity (CEQ). Richardson et al. (2005)
�(�Gm − Sales) The difference in the percentage change in gross margin and the percentage change in

sales (SALE). We define gross margin as the difference in sales (SALE) and costs of goods
sold (COGS).

Abarbanell and Bushee (1997)

�Shrout The definition of the percentage change in shares outstanding (SHROUT). Pontiff and Woodgate (2008)
�PI2A We define the change in property, plants ,and equipment as changes in

property,plants,and equipment (PPEGT) and inventory (INVT) over lagged total assets
(TA).

Lyandres , Sun, and Zhang (2008)

DTO We define turnover as ratio of daily volume (VOL) to shares outstanding (SHROUT) minus
the daily market turnover and de-trend it by its 180 trading day median. We scale down
the volume of NASDAQ securities by 38% after 1997 and by 50% before that to address
the issue of double-counting of volume for NASDAQ securities.

Garfinkel (2009); Anderson and Dyl
(2005)

E2P We define earnings to price as the ratio of income before extraordinary items (IB) to the
market capitalization as December t-1 Market capitalization is the product of share
outstanding (SHROUT) and price (PRC).

Basu (1983)

EPS We define earnings per share as the ratio of income before extraordinary items (IB) to share
outstanding (SHROUT) as of December t-1

Basu (1997)

Investment We define investment as the percentage year-on-year growth rate in total assets (AT). Cooper, Gulen and Schill(2008)
IPM We define pretax profit margin as ratio of pretax income (PI) to sales (SALE).
Lev leverage is the ratio of long-term debt (DLTT) and debt in the current liabilities (DLC) to the

sum of long-term debt, debt in current liabilities, and stockholders’ equity (SEQ)
Lewenllen (2015)

LME Size is the total market capitalization of the previous month defined as price (PRC) times
shares outstanding (SHROUT)

Fama and French (1992)

Turnover Turnover is last month’s volume (VOL) over shares outstanding (SHROUT). Datar, Naik and Radcliffe (1998)
PCM The price-to-cost margin is the difference between net sales (SALE) and costs of goods sold

(COGS) divided by net sales (SALE).
Gorodnichenko and Weber (2016) and

D’Acunto, Liu, Pflucger and Wcber
(2017)

PM The profit margin is operating income after depreciation (OIADP) over sales (SALE) Soliman (2008)
Q Tobin’s Q is total assets (AT), the market value of equity (SHROUT times PRC) minus cash

and short-term investments (CEQ) minus deferred taxes (TXDB) scaled by total assets
(AT).

ROA Return-on-assets is income before extraordinary items (IB) to lagged total assets (AT). Balakrishnan, Bartov and Faurel (2010)
ROC ROC is the ratio of market value of equity (ME) plus long-term debt (DLTT)minus total

assets to Cash and Short-Term Investments (CHE).
Chandrashekar and Rao (2009)

ROE Return-on-equity is income before extraordinary items (IB) to lagged book-value of equity. in Haugen and Baker (1996)
r12−2 We define momentum as cumulative return from 12 months before the return prediction

to two months before.
Fama and French (1996)

r12−7 We define intermediate momentum as cumulative return from 12 months before the
return prediction to seven months before.

Novy-Marx (2012)

r6−2 We definer6−2 as cumulative return from 6 months before the return prediction to two
months before.

Jegadeesh and Titman (1993)

r2−1 We define short-term reversal as lagged one-month return. Jegadeesh(1990)
S2C Sales-to-cash is the ratio of net sales (SALE) to Cash and Short-Term Investments (CHE). following Ou and Penman (1989)
Sales-G Sales growth is the percentage growth rate in annual sales (SALE). Lakonishok, Shleifer , and Vishmy (1994)
SGA2S SGA to sales is the ratio of selling ,general and administrative expenses (XSGA) to net sales

(SALE).
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A2. Figures

Figure A.1. Mispricing characteristic curve of standardized r12−2 and r12−7.

Figure A.2. Mispricing characteristic curve of standardized PCM.
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Figure A.3. Mispricing characteristic curve of standardized ROA in 1988–1989.

Figure A.4. Mispricing characteristic curve of standardized BEME.

Figure A.5. Mispricing characteristic curve of standardized LME.
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Figure A.6. Mispricing characteristic curve of standardized AT.

Figure A.7. Mispricing characteristic curve of standardized LEV in 2002–2003.

Figure A.8. Mispricing characteristic curve of standardized IPM in 2004–2005.
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Figure A.9. Mispricing characteristic curve of standardized DelGmSale in 2015–2016.

Figure A.10. Mispricing characteristic curve of standardized C2D in 2016–2017.

Figure A.11. Clustering of PCM 1986–1987
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Figure A.12. Clustering of IPM 2004–2005.

A3. Proofs

Throughout the proofs, we have the number of observations n → ∞,
and time T is fixed.

Proof of Theorem 6.1. In Equation (5), we have

Y = (
(X)A + � + Rμ(X))1ᵀT + (
(X)B + � + Rθ (X))Fᵀ + U ,

Multiply time-demeaned matrix DT on both sides, where DT = IT −
1
T 1ᵀT1T . Given time-invariant mispricing components, we obtain:

YDT = (
(X)B + � + Rθ (X))FᵀDT + UDT .

On-wards, we define YDT = Ỹ and Fᵀ = FᵀDT . Time-demeaned
factors do not change their properties.

Next, multiple both sides by P = 
(X)(
(X)ᵀ
(X))−1
(X)ᵀ,

Ŷ = (�(X)B + P� + PRθ (X))Fᵀ + PUDT .

We decompose

PỸ = Ŷ = �(X)BFᵀ + P�Fᵀ + PUDT + PRθ (X)Fᵀ = e1 + e2 + e3 + e4,

as n → ∞ and nv → ∞, approximation error Rθ (X) →P 0 as in
Huang et al. (2010). Thus, eᵀ4 →P 0.

Under Assumption 1, we have following results:
for 1

n
∑3

j=1 eᵀ2 ej,

1
n

P� →P 0,

therefore,

1
n

3∑
j=1

eᵀ2 ej + 1
n

3∑
j=1

eᵀj e2 →P 0.

For 1
n

∑3
j=1 eᵀ3 ej,

1
n

PU →P 0,

therefore,

1
n

3∑
j=1

eᵀ2 ej + 1
n

3∑
j=1

eᵀj e2 →P 0.

And only 1
n eᵀ1 e1 left, namely

1
n

eᵀ1 e1 = F
Bᵀ�ᵀ(X)�(X)B

n
Fᵀ.

Under Assumption 2–4 and fixed T. A much smaller T × T
matrix 1

n ŶᵀŶ can be sovled by asymptotic principal component
by Connor and Korajczyk (1986). F̂ = 1√

T
{ψ1, ψ2, . . . , ψJ},

where{ψ1, ψ2, . . . , ψJ} are eigenvectors corresponding to the first J
eigenvalues of 1

n ŶᵀŶ .
Thus, F̂ →P F follows. �

Proof of Theorem 6.2. Given F̂, we have

Ĝ(X) = ŶF̂(F̂ᵀF̂)−1,

as F̂ᵀF̂ = IJ , therefore,

Ĝ(X) = ỸF̂.

Then we need to show

E((Ĝ(Xi) − G(Xi))
2) = 0.

Take the sample analogue

1
n
(Ĝ(X) − G(X))ᵀ(Ĝ(X) − G(X)).

Given

G(X) = 
(X)B + Rθ (X).

Ĝ(X) = (
(X)B + P� + PRθ (X))FᵀF̂ + PUDTF̂

Furthermore,

G(X) − Ĝ(X) = (�(X)B + P� + PRθ (X))FᵀF̂ + PUDT F̂

− 
(X)B − Rθ (X) = q1 + q2 + q3 + q4.

Similar to the Proof of Theorem 6.1,
1
n
(Ĝ(X) − G(X))ᵀ(Ĝ(X) − G(X)) →P 1

n
qᵀ1 q1

+ 1
n

qᵀ3 q3 + 1
n

qᵀ1 q3 + 1
n

qᵀ3 q1 .
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For the first term,
1
n

qᵀ1 q1 = F̂ᵀF(�(X)B + P� + PRθ (X))ᵀ(�(X)B + P� + PRθ (X))FᵀF̂,

due to

1
n

3∑
j=1

eᵀ2 ej + 1
n

3∑
j=1

eᵀj e2 →P 0,

and
1
n

eT
1 e1 →P F

Bᵀ�ᵀ(X)�(X)B
n

Fᵀ

then,

1
n

qT
1 q1 →P F̂ᵀF

Bᵀ�ᵀ(X)�(X)B
n

FᵀF̂.

Theorem 6.1 and Assumption 2 give F̂ → F and FTF = IJ , therefore

1
n

qT
1 q1 →P Bᵀ�ᵀ(X)�(X)B

n
,

Similarly,

1
n

qT
3 q3 →P Bᵀ�ᵀ(X)�(X)B

n
,

1
n

qT
1 q3 →P −Bᵀ�ᵀ(X)�(X)B

n
,

1
n

qT
3 q1 →P −Bᵀ�ᵀ(X)�(X)B

n
.

Therefore,

1
n

qᵀ1 q1 + 1
n

qᵀ3 q3 + 1
n

qᵀ1 q3 + 1
n

qᵀ3 q1 → 0.

Then,
1
n
(Ĝ(X) − G(X))ᵀ(Ĝ(X) − G(X)) →P 0,

thus,

Ĝ(X) →P G(X).

Then Theorem 6.2 follows.
�

Proof of Theorem 6.3. Let Ẏ = 1
T (Y − Ĝ(X)F̂)1T . By substituting the

restriction, we have the Lagrangian equation:

min
A

(Ẏ − �(X)A)ᵀ(Ẏ − �(X)A) + λĜᵀ(X)�(X)A (A.1)

Then we take the first order condition with respect to A and λ sepa-
rately, and we obtain(

2�(X)ᵀ�(X) 
(X)ᵀOG(X)

Ĝ(X)ᵀ�(X)ᵀ 0

) (
Â
λ

)
=

(
2
(X)ᵀPY

0

)
.

(A.2)
Under Assumption 2, the above matrices are invertible, which can be
written as follows:(

Â
λ

)
=

(
2
(X)ᵀ
(X) 
(X)ᵀOG(X)

Ĝ(X)ᵀ�(X)ᵀ 0

)−1 (
2
(X)ᵀPY

0

)
.

(A.3)
Therefore, we obtain

Â = QÃ,

where
Q = I − (
(X)ᵀ
(X))−1
(X)ᵀĜ(X)(Ĝ(X)ᵀĜ(X))−1Ĝ(X)ᵀ
(X),

Ã = 1
T

(
(X)ᵀ
(X))−1
(X)ᵀẎ1T .

Furthermore, let � = 
(X)OA − h(X) = 
(X)QQA − 
(X)

A − Rμ(X).
Under the restriction Ĝ(X)ᵀ�(X)A = 0, we can obtain

� = 
(X)M(
(X)ᵀ
(X))−1
(X)ᵀ
1
T

(
(X)A

+Rμ(X) + � + (� + Rθ (X))F′)1T − 
(X)A − Rμ(X). (A.4)
Furthermore, we have:

(X)M(
(X)ᵀ
(X))−1
(X)ᵀ = (I − 
(X)(
(X)ᵀ
(X))−1


(X)ᵀĜ(X)(Ĝ(X)ᵀĜ(X))−1

Ĝ(X)ᵀ)P. (A.5)
And then, substitute Equation A.5 into Equation A.4 and under
Assumption 1 and Theorem 6.2

� = 
(X)A − 
(X)A − Rμ(X).

Rμ(X) → 0 as n → ∞,
therefore,

1
n
�ᵀ� → 0.

And the Theorem 6.3 follows. �
Proof of Theorem 6.4.

Define Z = max
{1�p�P,1�h�Hn}

{|α̂ph|/σ̂ph}. Under Assumption 3, we

have
α̂ph/σ̂ph|H0 →d N(0, 1).

Therefore, under the H0, we have:
etE(Z)�E[etZ]

= E[max{t|α̂ph|/σ̂ph}]

�
p=P,h=Hn∑
p=1,h=1

E[et|α̂ph|/σ̂ph ]

= PHnet2/2.
Then take the logarithm of both sides we can obtain

E[Z]� log PHn
t

+ t
2

.

If we set t = √
2 log PHn to minimise log PHn

t + t
2 , then we have:

E[Z]�√
2 log PHn.

Therefore, we can bound the |α̂ph|/σ̂ph by
√

2 log PHn. �
Proof of Theorem 6.5. To proof

Pr(reject H0|M̂ �= ∅) → 1,
equivalently, we need to prove

Pr(S0 + S1|M̂ �= ∅) → 1

S0 = Hn
∑P

p=1 I(
∑Hn

h=1 |α̂ph|/σ̂ph�ηn), as Hn = nv → ∞ when
n → ∞.

Once M̂ �= ∅, then
∑P

p=1 I(
∑Hn

h=1 |α̂ph|/σ̂ph�ηn)�1, therefore,
S0 → ∞ as n → ∞. Meanwhile Fq = O(1), we can show that:

Pr(S0 + S1 > Fq|M̂ �= ∅) → 1.
Then the Theorem 6.5 follows. �
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Supplementary Materials

The supplement material includes a table of characteristics description,
proofs, plots of mispricing curves, and figures of peer groups.
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