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Abstract

This paper studies a heterogeneous coefficient spatial factor model that separately addresses both common

factor risks (strong cross-sectional dependence) and local dependency (weak cross-sectional dependence) in

equity returns. From the asset pricing perspective, we derive the theoretical implications of no asymptotic

arbitrage for the heterogeneous spatial factor model, generalizing the work of Kou et al. (2018). We also

provide the associated Wald tests for the APT restrictions in the general case when there are both traded and

non-traded factors. On the empirical side, it is challenging to measure granular firm-to-firm connectivity for

a high-dimensional panel of equity returns. We use extensive business news to construct firms’ links through

which local shocks transmit, and we use those news-implied linkages as a proxy for the connectivity among

firms. Empirically, we document a considerable degree of local dependency among S&P500 stocks, and the

spatial component does a great job in capturing the remaining correlations in the de-factored returns. We

find that adding spatial interaction terms to factor models reduces mispricing and boosts model fitting. By

comparing the performance of the model estimated using different networks, we show that the news-implied

linkages provide a comprehensive and integrated proxy for firm-to-firm connectivity.
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1 Introduction

Comovement in equity returns is the combined effects of exposures to common risks and local interactions.

Classical asset pricing models such as the classical capital asset pricing model (CAPM) developed by Sharpe

(1964), and the arbitrage pricing theory (APT) by Ross (1976) focus only on the strong/pervasive component

driven by a few common factors. Many studies have found those models focusing on strong dependence only

are insufficient to capture all the significant interdependencies in asset returns. Local dependence still plays

a non-negligible role (see for example Gabaix (2011), Acemoglu et al. (2012), Israelsen (2016), Barigozzi and

Hallin (2017), Kou et al. (2018), Hale and Lopez (2019), Bailey et al. (2019a), and Barigozzi and Brownlees

(2019)). To distinguish the two sources of dependencies, imagine a group of people sitting in a room on a chilly

winter day. People might catch a cold because the heater is broken (common factors) or someone sitting close

to them is ill (local interactions).

In this paper, we study a spatial factor model that separately addresses both common factor risks and the

local dependence in equity returns. The factor component and spatial component complement each other, with

the former capturing strong cross-sectional dependence in equity returns, and the latter capturing the weak

cross-sectional dependence due to local interactions among entities. The network architecture of entities, like

the sitting plan in the above example, is the key to studying local interactions. Unlike spatial interactions

in geographical systems, where there is a natural network structure, there is no natural network structure for

a high-dimensional panel of equity returns. We use extensive business news data to construct firms’ linkages

through which local shocks transmit. We use those news-implied linkages as a proxy for the connectivity among

firms. It has been documented that common news coverage reveals information about linkages among companies,

which are related to many economically important relationships like business alliances, partnerships, banking

and financing, customer-supplier, and production similarity (Scherbina and Schlusche (2015), Schwenkler and

Zheng (2019)). We use news data from RavenPack Equity files Dow Jones Edition from the beginning of

2004 to the end of 2015. This comprehensive news dataset combines relevant content from multiple sources,

including Dow Jones Newswires, Wall Street Journal, and Barron’s MarketWatch, which together produce the

most actively monitored streams of news articles in the financial system. We identify linkages among firms by

news co-mentioning.

Using the novel text-based network, we estimate the spatial factor model with different sets of common risk

factors. We find a considerable degree of local dependence among S&P500 stocks. The spatial interaction term

is highly significant after controlling for popular factors, and it continues to be significant even after adding

industry-level factors. Different from most of the spatial econometrics literature, where spatial coefficients are

assumed to be homogeneous, we adopt a heterogeneous coefficient framework from Bailey et al. (2016) and

Aquaro et al. (2020). The model is flexible, allowing us to capture very general interaction patterns among

a large number of firms. Using that framework, we are able to not only investigate the average effect among

all or some subgroups of firms but also to gauge the individual-level effect. We document that apart from the

average spatial effect measured by the mean group (MG) estimate being highly significant, at the individual

level, the spatial effect via news-implied linkages is also highly significant after taking into account the multiple

testing issue using the methodology of Barras et al. (2010). We find that the percentages of the individual

contemporaneous spatial parameters that are statistically significant are over 70% across all specifications we
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consider (given a false discovery rate of 5%).1 This high significance ratio implies that the link identification

method based on news co-mentioning successfully detects economically important links. The framework also

allows us to examine the heterogeneity at subgroup levels. By applying mean group estimation to different

industry groups, we document heterogeneity at the industry level. In particular, financial companies have the

highest degree of local dependence. We argue that the spatial factor model provides a unified way of addressing

both strong and weak/local dependence in equity returns. To investigate how well the spatial factor model

captures both types of dependence, and in particular how well the spatial component captures the remaining

dependence in the de-factored returns, we examine the changes in the correlation structure before and after

adding the spatial component to the traditional factor models. We find that adding the spatial component

reduces the number of non-zero pair-wise cross-correlations by a huge margin. These results show that the

spatial component constructed with news-implied linkages successfully captures the remaining cross-correlations

from the de-factored returns.

We consider the asset pricing implications of the spatial factor model. Specifically, we extend some recent

work of Kou et al. (2018) to allow for heterogeneous spatial effects and to allow for both traded and non-traded

factors. We derive the empirically testable restrictions under a generalization of their framework. We consider

the general case where there is a combination of both tradable and non-tradable factors and also the special case

where there are only tradable factors. We provide Wald tests of these restrictions in both cases that exploit the

spatial structure. In the case where there are non-tradable factors, the Wald statistic is a little non-standard

and we use results of Andrews (1987) to justify the limiting chi-squared null distribution. We test the APT

restrictions using a fairly large set of individual stocks. Our method is well suited to the moderately large cross-

section case, since the spatial structure implies that the error covariance matrix of the reduced form model has

only order n free parameters (where n is the cross-section dimension) rather than the order n2 found in the

unrestricted case and furthermore the inverse covariance matrix has a simple closed form expression. Unlike the

conventional Wald test that does not exploit this structure, this test is going to work well for large n as long

as T is sufficiently large. We perform numerical studies and they show that these tests perform well as long

as T is large. Implementing the spatial factor models empirically, we demonstrate the benefits of addressing

spatial/local interaction in terms of reducing mispricing errors and boosting model fittings.

Literature Review. This paper contributes to several strands of literature. The first one is cross-sectional

dependence in equity returns. Cross-sectional dependence in a large panel is usually complex, and it reflects

different types of inter-dependencies. Chudik et al. (2011), and Bailey et al. (2016) show that strong cross-

sectional dependence (CSD) and weak cross-sectional dependence (CWD) have different economic implications

and statistical behaviors. Thus they need to be accounted for separately. Kuersteiner and Prucha (2020) consider

a short T panel with cross-sectional dependence due to both common factor risks and spatial/local interactions.

Kou et al. (2018) consider a spatial asset pricing model with both factors and spatial interactions when the

number of assets is small, the spatial effect is homogeneous, and errors are homoskedastic. Our spatial factor

model is more general than theirs, as we allow large n, heterogeneous spatial effect, heteroscedastic errors,

and spatial-temporal terms can be easily accommodated. Our work is related to the so-called ”factor zoo”

literature, (Harvey et al. (2016)), where many different traded and non-traded factors have been found, at least

provisionally, to associate with the cross-section of stock returns. We allow both types of observed factors in

1This is the result when we use a conservative Bonferroni correction. Applying less conservative multiple testing procedures

would give a higher significance ratio at the individual level.

3

Electronic copy available at: https://ssrn.com/abstract=3827902



addition to our spatial factors (there are essentially n spatial factors in each structural equation).

The paper also relates to the theory and testing of arbitrage pricing. While the literature focuses on the role

of strong dependence (i.e., exposures to common risk factors), local dependence has received much less attention

theoretically and empirically. Some recent literature considers testing asset pricing restrictions using individual

stocks instead of portfolios. For example, Gagliardini et al. (2016) consider two-pass regressions of individual

stock returns with time-varying risk premium, and they propose a Wald test. To consistently estimate the

covariance matrix, some regularization techniques like hard thresholding (Bickel and Levina (2008)) are needed.

There is a large literature that uses statistical techniques to implicitly identify linkages from the return data

itself. For example, Fan et al. (2011) suppose that the error covariance matrix is sparse (i.e., has lots of zeros,

which represent the absence of linkages between firms beyond that contained in the common factors). They

identify the location of non-zero entries by applying thresholding methods to the sample error covariance matrix.

Our method uses economically relevant information gathered from other sources, specifically news stories, to

identify the linkages. We explore a comprehensive news dataset that combines relevant content from multiple

sources and identifies linkages among firms by news co-mentioning. With a measure of local connectivity, we

can capture correlations that arise from both strong and the remaining weak dependence in a large panel using

a single step. Without prior knowledge of local connectivity, Fan et al. (2011) need a two-step procedure (they

first estimate a factor model, then use thresholding to estimate the error sample covariance matrix). There is a

rising literature on machine learning and finance (see Gu et al. (2020), Giglio et al. (2021), Chen et al. (2020)

among others). Especially, a lot of work has been done in quantifying the information embedded in unstructured

data like text data (Garcia (2013), Scherbina and Schlusche (2015), Baker et al. (2016), Hoberg and Phillips

(2016), Ke et al. (2019), Schwenkler and Zheng (2019), and Schwenkler and Zheng (2020), etc). Alternative data

fill the gaps in data availability induced by limited disclosure and slow update, thus complementing traditional

economic datasets. Among these aforementioned works, Scherbina and Schlusche (2015) and Schwenkler and

Zheng (2019) also infer networks of firms from news. They find the information embedded in those news-

implied linkages is highly predictive of stock returns and aggregate outcomes. Instead of using that information

as conditional predictors, we build neighbor’s contemporaneous returns into the asset pricing model, and we

find news-implied interactions matter unconditionally in the cross-section of stock returns.

Our work also contributes to network effect or local risk spillover effect among economically linked firms.

Local risks transmit through economic linkages, and firms with links exhibit excess co-movement beyond what is

explained by factor models. There has been various proxies for firm to firm networks in the literature, including

industry-based peers (Moskowitz and Grinblatt (1999), Fan et al. (2016), and Engelberg et al. (2018)), analyst

co-coverage networks (Kaustia and Rantala (2013), Israelsen (2016), and Ali and Hirshleifer (2020)), customer-

supplier networks (Cohen and Frazzini (2008)), geographic networks (Pirinsky and Wang (2006), Parsons et al.

(2020)), data-driven partial correlation network (Barigozzi and Hallin (2017)), etc. We show that our news-

based linkages provide a comprehensive and integrated proxy for firm-level connectivity. The spatial factor

model estimated with news-implied network out-performs those aforementioned networks (except the return-

based partial correlation network, which very much reflects the true connectivity structure in the sample) in

terms of minimizing the mispricing errors. We also show that conditional on all those previously documented

links, and our news-implied linkages are still important channels of local risk spillovers.

The rest of the paper is organized as follows. Section 2 describes the difference between the strong and

weak cross-sectional dependence and we introduce the spatial factor model. Section 3 develops the asset pricing
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implications in the presence of local interactions. Section 4 presents the estimation and inference of the het-

erogeneous coefficient spatial model and provides tests of the APT restrictions. Section 5 presents the results

of a simulation study investigating our asset pricing tests. Section 6 presents the empirical study. Section 7

concludes. Proofs, technical details, and supplementary figures and tables are in the Appendices.

Notations: If {fn}∞n=1 and {gn}∞n=1 are both positive sequence of real numbers, then fn = O(gn) (the

exact order of magnitude of fn and gn are the same) if there exist n0 ≥ 1 and positive finite constants C0

and C1, such that inf n≥n0(fn/gn) ≥ C0, and supn≥n0
(fn/gn) ≤ C1. For a n × n real matrix A = (aij),

define its maximum column sum norm by ∥A∥1 = max1≤j≤n
∑n
i=1 | aij |, its maximum row sum norm by

∥A∥∞ = max1≤i≤n
∑n
j=1 | aij |. Let λ1, . . . , λn be the eigenvalues of matrix A, define the spectral radius of A

by ρ(A) = max{|λ1|, . . . , |λn|}, and its spectral norm by ∥A∥ =
√
ρ(A⊺A). int(x) gives the integer part of x.

We let 1 denote an n× 1 unit vector.

2 Modelling Cross-Sectional Dependence by Spatial Factor Model

2.1 Strong Dependence: The Factor Model

Consider the factor model for returns at time t,

rt = α+Bft + ϵt,

where: rt is the n× 1 vector of equity returns at t, ft is the K × 1 vector of common risk factors, and B is the

n×K factor loadings, where βik is the loading of asset i on factor k. Let

n∑
i=1

| βik |= O(nαβk ), for k = 1, . . . ,K,

∥B∥1 = max
1≤k≤K

n∑
i=1

| βik |= O(nαB),

where αβk measures how pervasive the kth factor is, and αB = maxk(αβk) measures how pervasive the factor

component Bft is. For standard factor models, it is assumed that αβk > 0 for k = 1, . . . ,K, and αB = 1.

Under these assumptions, each factor has a non-diminishing effect on the system, and exposures to common

risk factors give rise to strong cross-sectional dependence, which is systematic and non-diversifiable.

2.2 Weak/Local Dependence: The Spatial Model

Consider the canonical spatial autoregressive model with a homogeneous spatial coefficient

rt = α+ ψWrt + ϵt,

where W is the n× n adjacency matrix that specifies the channels from which shocks transmit, with a typical

entry wij being the influence of the returns of j on that of i. The strength of spatial risk spillovers is represented

by the scalar parameter ψ.

Spatial dependence usually characterizes weak cross-sectional dependence where interactions are local. To

show this, we re-write the spatial autoregressive model as rt = G(ψ)νt, where G(ψ) = (In − ψW )−1, and

νt = α+ ϵt. The spatial autoregressive model can be seen as a factor model with n factors, where G(ψ) is the
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n × n matrix of factor loadings, where gij is the loading of i on factor j. All factors are weak and only have

local effects if the following absolute summability condition is true: for c some positive finite constant

n∑
i=1

| gij | ≤ c,

for all j = 1, . . . , n. The absolute summability condition is equivalent to a bounded column sum matrix norm

condition on the Leontief inverse G(ψ) = (In − ψW )−1. As in LeSage (2008), G(ψ) = (In − ψW )−1 =

I + ψW + ψ2W 2 + ... = I +
∑∞
j=1 ψ

jW j . The Leontief inverse takes accounts of direct interaction effect and

higher-order indirect effects. The assumption that the column sum of G(ψ) = (In−ψW )−1 is uniformly bounded

is usually assumed in spatial econometrics (see Kelejian and Prucha (1998), Kelejian and Prucha (1999), Lee

(2004)) to limit the cross-sectional correlation to a manageable degree. Although some recent developments show

that we may relax this assumption (Aquaro et al. (2020), Pesaran and Yang (2021)2), we take that assumption

as a modelling assumption to distinguish between strong and weak/local dependence. In particular, for weak

dependence, no cross-sectional unit exerts pervasive effects on the system, and the interactions are local. There

will be more discussions in Section 2.3.

2.3 Strong and Weak Dependence: The Spatial Factor Model

We study a heterogeneous coefficient spatial factor model in which the factor component and the spatial compo-

nent complement each other, with the former addressing strong dependence and the latter addressing spillovers

that are non-pervasive/local in nature (i.e.,cross-sectional weak dependence (CWD) defined in Chudik et al.

(2011)). Specifically, we suppose that

rt = α+Bft +ΨWrt + ϵt, (1)

where ϵt is an error process specified below. Here, Ψ = diag(ψ) = diag(ψ1, . . . , ψn) is a diagonal matrix with

n individual-specific contemporaneous spatial coefficients on the main diagonal, while B = (β1, . . . ,βK) is the

n×K matrix of factor loadings, where βk is the vector of loadings on the kth common risk factor.

The spatial component has several main features. Firstly, the spillover coefficients are heterogeneous. One

might reasonably suspect that the sensitivities to neighbors’ risks are different from firm to firm. While the

restrictive assumption that all entities share the same spatial coefficient is necessary for small T , it can be

relaxed when T is big. Some recent work in the spatial literature (see LeSage and Chih (2018), Aquaro et al.

(2020), and Chen et al. (2021)) consider heterogeneity in spatial parameters explicitly. We follow the framework

from Aquaro et al. (2020). They show that a heterogeneous spatial autoregressive model like Equation 1 can be

consistently estimated with large T. We utilize this nice feature to explore the heterogeneity in the strength of

local dependency. Moreover, we could examine the heterogeneity pattern at subgroup levels (such as industry

levels) using mean-group estimation, which is a popular tool in heterogeneous panel literature. Secondly, it is

possible to add weakly exogenous spatial-temporal terms
∑L
l=1 ΨlWrt−l to Equation 1. ΨlWrt−l corresponds

to the spatial-temporal term at the lth lag for l = 1, . . . , L, where Ψl =diag(ψl) =diag(ψl,1, . . . , ψl,n) is a

diagonal matrix of spatial-temporal parameters at the lth lag. These dynamic terms may account for potential

market microstructure effects, which are important for financial data with high frequency.

We impose the following assumptions on the heterogeneous coefficient spatial factor model (Equation 1).

2They explicitly consider the case where there are dominant units that generate pervasive effects.
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Assumption 1. E(ϵt) = 0, E(ft) = 0, E(fktϵt) = 0 for k = 1, . . . ,K, E(ϵtϵ
⊺
t ) = Ω= Dσ = diag(σ2) =

diag(σ2
1 , . . . , σ

2
n), where 0 <σ2 ≤ σ2

i ≤ σ̄2 <∞.

Assumption 2. (a) Let
∑n
i=1 | βik |= O(nαβk ), for k = 1, . . . ,K, and ∥B∥1 = max1≤k≤n

∑n
i=1 | βik |=

O(nαB). αβk > 0 for k = 1, . . . ,K, and αB = 1. (b) λmin(B
⊺B) → ∞ as n→ ∞.

Assumption 3. (a) The adjacency matrix W is known and time-invariant with its diagonal elements being

zeros. (b) W has bounded maximum row sum norm (i.e.,∥W∥∞ < M <∞), and for all i = 1, . . . , n

| ψi |<
1

∥W∥∞
.

Assumption 4. Define G(Ψ) = (In − ΨW )−1, where gij is a typical entry of G. Then suppose that

∥G(Ψ)∥1 < c <∞ for a positive constant c.

Remark 1. Assumption A2 guarantees that each factor has a non-diminishing effect on the system, and

the exposures to common risk factors give rise to strong cross-sectional dependence. We only assume that at

least one factor is strong (i.e., with α = 1), and all other factors are not weak. This is because, in practice, we

may want to add many factors, which have different degrees of pervasiveness. For example, Bailey et al. (2020)

find that for the factors proposed in the finance literature for asset pricing, only the market factor is strong

over all the windows they consider. The credibility of this assumption depends on how many and what type of

factors are being considered. There is a growing literature on weak factor models, see for example Bryzgalova

(2015), where these conditions are weakened for a subset of the factors and the consequences traced through

for estimation and testing.

Remark 2. Assumption A3 is to ensure that the Leontief inverse G(Ψ) = (In − ΨW )−1 exists. The

invertibility of (In − ΨW ) requires the spectral radius ρ(ΨW ) < 1, which holds under Assumption A3 given

that ρ(ΨW ) ≤ ∥ΨW∥∞ ≤ ∥Ψ∥∞∥W∥∞ = max1≤i≤n | ψi | 1
∥W∥∞

< 1.

Remark 3. Assumption A4 assumes that the column sums of G(Ψ) = (In −ΨW )−1 is uniformly bounded

in absolute values as n goes to infinity. This ensures that no cross-sectional unit exerts pervasive effects on the

system and the interactions are local. Such assumption has been usually made in the spatial literature (see

Kelejian and Prucha (1998), Lee and Yu (2010), Yu et al. (2008), etc). Assumption A4 also guarantees that

the cross-sectional dependence in the errors of the reduced form factor model of Equation 1 is weak in the way

defined in Chamberlain and Rothschild (1983). When G(Ψ) = (In − ΨW )−1 exists, notice that the spatial

factor model (Equation 1) can be written as a reduced form factor model

rt = Gα+GBft +Gϵt = α
∗+B∗ft + ϵ

∗
t . (2)

Under Assumptions A1, A3, and A4, the spatial interactions lead to weak cross-sectional dependence in the

reduced form errors ϵ∗t , namely the sequence of reduced form error covariance matrix {Ω∗} has uniformly

bounded eigenvalues. To see this, we have

ρ(Ω∗) = ∥GΩG⊺∥ ≤ σ̄2 ∥G∥ ∥G⊺∥ ≤ σ̄2 ∥G∥21 ≤ σ̄2c2 <∞.
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We point out that Assumption A4 is not required for consistent estimation of the model (see Aquaro et al.

(2020)). In principle, we could allow diverging maximum eigenvalues (for example, induced by a block depen-

dence structure) as in the Assumption A3 from Gagliardini et al. (2016). We adopt Assumption A4 mainly

for two reasons. Firstly, it is a sufficient condition for the reduced form factor model of Equation 1 to satisfy

the complete factor representation condition from Ingersoll Jr (1984), under which the factor premiums can be

uniquely identified. Secondly, Assumption A4 is a modelling assumption to distinguish the strong and weak

cross-sectional dependence that arises from exposures to common risk factors and spatial/local interactions.

From our perspective, pervasive dependence should be addressed by adding sufficient common factors into the

model, and the correlation beyond factors should be weak.3 In a similar vein, Fan et al. (2011) estimate the

high-dimensional covariance matrix of asset returns by assuming that after taking out the influence of Fama-

French three factors, the remaining cross-sectional dependence is weak in the way defined in Chamberlain and

Rothschild (1983).

The spatial factor model provides a unified way of addressing the remaining dependence in the de-factored

component. Fan et al. (2011) identify the location of significant correlations by applying thresholding methods

to the factor model error sample covariance matrix. To capture both factor-driven strong dependence and re-

maining weak dependence in a large panel, they need a two-step procedure. Our method provides an alternative,

which can be achieved in a single step. Compared with purely statistical methods, our method also has the

advantage of being interpretable given that our linkages are constructed using information from business news.

3 Arbitrage Pricing Theory Under the Spatial Factor Model

In this section, we focus on the asset pricing implications of our heterogeneous coefficient spatial factor model.

Kou et al. (2018) consider a special case of this model, which they call the Spatial APT model. In particular,

they consider the case where n is small, ψi = ψ (homogeneous spatial effects), and the errors are homoskedastic.

Kou et al. (2018) derives the implications of the absence of arbitrage on the parameters of the model, in

particular on the intercept vector α. We extend their analysis by deriving the implications of no-arbitrage

under our framework.

Since the APT operates in a static framework, we drop the time subscript, and consider the one-period

spatial factor model:

r = α+Bf +ΨWr + ϵ. (3)

We follow Ingersoll Jr (1984), and consider a fixed infinite economy where a sequence of nested subsets of assets

are examined. For the nth economy, a new asset is added to the (n− 1)th economy indicated by

rn⊺ = (rn−1⊺, rn).

We denote the size of economy by superscript n. And a portfolio in the nth economy is denoted as cn ∈ Rn. 1n

is the vector of n ones. We consider subsequences of assets, where subsequences are indexed by v. There are

asymptotic arbitrage opportunities if there is a subsequence of portfolios that satisfy the following conditions:

var(cv⊺rv) → 0 as v → ∞,

3A similar view has been taken in Gagliardini et al. (2020). The authors believe that if we correctly specify the common factors,

the errors should be weakly correlated.
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E(cv⊺rv) ≥ δ > 0 for all v,

cv⊺1v = 0 for all v.

We say that two n × 1 vectors are asymptotically equivalent, i.e., αn ≈ α̃n whenever there is a positive finite

number V such that the sum of squared deviations is uniformly bounded, i.e., for vn = αn− α̃n we have

(vn)⊺(vn) ≤ V for all n. (4)

That is to say that the (pricing) error vector vn does not grow with the number of assets.

Theorem 1. Assume that the returns on an infinite set of assets are generated by the heterogeneous spatial

factor model (3), and that Assumptions A1-A4 hold. If there are no arbitrage opportunities, then there is a

sequence of K by 1 vector of factor premiums λn and a constant λn0 such that the following approximation

holds

αn ≈ (In −ΨnWn)1nλn0 +Bnλn. (5)

Corollary 1. Suppose that the factors are traded portfolios and that there exists a risk-free asset with rate

rf . Then, we can re-write the spatial factor model (Equation 3) in terms of excess returns:

r̃ = α̌+Bz̃+ΨW r̃ + ϵ, (6)

where α̌ = α − (In − ΨW )1rf + B1rf − BE(f̃), for 1 being the n × 1 unit vector and 1 being a vector of

ones that is conformable. r̃ = r − 1rf is the vector of asset excess returns, and z̃ is the vector of factor excess

returns. We have z̃ = f̃ − rf1, where f̃ is the factor portfolio real returns, and f = f̃ −E(f̃). In such a case,

for an infinite economy, no asymptotic arbitrage implies that

α̌n ≈ 0. (7)

Corollary 2. For any δ > 0, there is a constant nδ such that the number of elements in α̌n that are bigger

than δ in absolute values is uniformly bounded by nδ . That is,

lim
n→∞

n∑
j=1

I(| α̌nj |> δ) < nδ <∞. (8)

Many different factors have been proposed and used in published articles, with some factors being traded

portfolios while some factors are not (Harvey et al. (2016)). The asset pricing implications of traded factors

are different from those of non-traded factors. Therefore, we consider the general case with a mixture of both

these two types of factors. Suppose that out of the K common risk factors, the first k1 are tradable factors, and

the rest k2 factors are not tradable. Let f = (f⊺
1 ,f

⊺
2)

⊺, where f1 = (f1, . . . , fk1)
⊺, and f2 = (fk1+1, . . . , fK)⊺.

f̃ = (f̃
⊺
1 , f̃

⊺
2)

⊺, where f̃1 = (f̃1, . . . , f̃k1)
⊺, and f̃2 = (f̃k1+1, . . . , f̃K)⊺. Here, B = (B1,B2), where B1, B2

correspond to the first k1 and last k2 columns of B, respectively. λ = (λ⊺
1 ,λ

⊺
2)

⊺, where λ1 and λ2 correspond

to the risk premiums for the k1 tradable factors and k2 non-tradable factors, respectively.

Corollary 3. Suppose there exists a risk-free asset with rate rf , and there is a combination of both tradable

and non-tradable factors as described above. Re-write the spatial factor model (3) as:

r̃ = α+B1z̃1 +B2f2 +ΨW r̃ + ϵ, (9)
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where r̃ = r − 1rf is the vector of asset excess returns, z̃1 = f̃1 − rf1 is the vector of excess factor returns for

the k1 tradable factors, and α= α− (In −ΨW )1rf +B11rf −B1E(f̃1), for 1 being the n× 1 unit vector and

1 being a vector of ones that is conformable. In such a case, no asymptotic arbitrage implies

αn ≈ Bn
2λ

n
2 . (10)

Remark 4. Theorem 1 and the corollaries suggest some statistics that we can employ to compare the rela-

tive performance of different asset pricing models. In particular, the L1, L2 norms of the mispricing errors, and

the number of components with big mispricing errors could be useful in measuring how well the approximation is.

Remark 5. Theorem 1 and the corollaries can be easily extended to spatial factor models with more than

one spatial spillover channel, for example, the two-W model in Bailey et al. (2016).

Proofs of theorem 1 and the corollaries are in Appendix A.

4 Estimation and Statistical Inference

In this section, we discuss the estimation of the baseline heterogeneous coefficient spatial factor model. We

suppose that a sample of returns and factors are observed {rt, ft, t = 1, . . . , T} along with the spatial interaction

matrix W obtained from the text datasource. We suppose that the data are generated from

rt = α+Bft +ΨWrt + ϵt, (11)

where ϵt is an error process discussed below.

4.1 Quasi Maximum Likelihood

There are mainly two classes of methods that have been developed in the literature to estimate spatial models:

the maximum likelihood method (Lee (2004), Lee and Yu (2010), Shi and Lee (2017), and Aquaro et al. (2020),

among others), and the IV/GMM approach (Kelejian and Prucha (1998), Kelejian and Prucha (1999), Lee

(2007), and Kuersteiner and Prucha (2020) among others). We adopt the QML procedure proposed in Bailey

et al. (2016) and Aquaro et al. (2020). Collect all parameters from the model into the (n(K + 3)) × 1 vector

θfull = (ψ⊺,α⊺,β⊺
1 , . . . ,β

⊺
K ,σ

2⊺)⊺ = (ψ⊺, b⊺,σ2⊺)⊺, where b = (α⊺,β⊺
1 , . . . ,β

⊺
K)⊺ collects all the parameters

associated with the exogenous variables (we could also add weakly exogenous terms). The log-likelihood function

of Equation 11 is

LT (θfull) = −nT
2

ln(2π)− T

2

n∑
i

ln
(
σ2
i

)
+
T

2
ln | S(Ψ)⊺S(Ψ) | −1

2

T∑
t=1

[S(Ψ)rt−Bxt]⊺−1[S(Ψ)rt−Bxt], (12)

where S(Ψ) = In −ΨW , and rt = (r1t, . . . , rnt)
⊺. We stack the constant and all the exogenous variables for i

at t in xit = (1,f⊺
t )

⊺, and xt = (x⊺
1t, . . . ,x

⊺
nt)

⊺ is the (1+K)n by 1 vector. Here, B is the n by (1+K)n block

diagonal matrix with elements b⊺i = (αi, β1,i, . . . , βK,i), i = 1, . . . , n, on the main diagonal and zeros elsewhere.

An immediate extension of Equation 11 is to incorporate weakly exogenous spatial-temporal terms. The

model is

rt = α+Bft +Ψ0Wrt +

L∑
l=1

ΨlWrt−l + ϵt, (13)
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where we denote the contemporaneous spatial coefficients using Ψ0, and L is the number of spatial-temporal

terms to incorporate. These dynamic terms could account for potential market microstructure effects, which

might be important for applications that use high-frequency data. Similar modifications have been used in

Eugene (1992), see also Dimson (1979). In such a case, in the likelihood function (Equation 12), xit =

(1,f⊺
t ,
∑n
j=1 wijrjt−1, . . . ,

∑n
j=1 wijrjt−L)

⊺ collects all weakly exogenous for i at t, and xt = (x⊺
1t, . . . ,x

⊺
nt)

⊺

is the (1 + K + L)n by 1 vector. Here, B is the n by (1 + K + L)n block diagonal matrix with elements

b⊺i = (αi, β1,i, . . . , βK,i, ψ1,i, . . . , ψL,i), i = 1, . . . , n, on the main diagonal and zeros elsewhere. One may also

include nonlinearities in the factors by adding basis functions of them into the regression and likelihood function,

although the justification of such a semiparametric enterprise is beyond the scope of this work.

The quasi maximum likelihood estimator θ̂full,QMLE maximizes Equation 12. The error terms need not be

Gaussian, but when they are, θ̂full,QMLE is the maximum likelihood estimator of θfull. Note that conditional on

Ψ (or Ψ0 if we are dealing with the spatial-temporal model (Equation 13)), the system is linear, so that we can

concentrate out the parametersB,σ (by standard linear regression arguments) to reduce the dimensionality and

hence the computational burden. Aquaro et al. (2020) establish the consistency and the asymptotic normality

of θ̂full,QMLE in the case where T is large and n is fixed, and consistency and the asymptotic normality for the

mean group estimators in the case where both T and n are large but
√
n/T → 0. We provide their primitive

conditions for identification and inference in Appendix B. Standard errors can be based on the first and second

derivatives of the likelihood with respect to the parameters as usual for quasi-likelihood methods.

In the empirical section, we estimate two variants (multi-period versions of Equation 6 and Equation 9) of

the baseline specification, for which we just need to modify the response variable and the exogenous variables.

4.2 Spatial Correlation

In this section we investigate how well the spatial factor model captures the remaining dependence in the

de-factored component or rather how we can quantify this. Specifically, we can examine the changes in the

correlation structure before and after adding the spatial component to factor models. There has been a literature

on testing cross-sectional dependence, see Pesaran et al. (2004), and Juodis and Reese (2021). Instead of using

a joint test, we focus on individual tests in this paper. If the spatial component does a good job explaining

the remaining local dependence, we should see a reduction in the number of pairs with non-zero pair-wise error

cross-correlations after adding the spatial component. In our application, we estimate the number of non-zero

pair-wise cross-correlations of residuals from (1) a factor model and (2) its spatial-augmented model. For n

cross-sectional units, the problem corresponds to testing n(n− 1)/2 null hypotheses simultaneously. We use a

multiple testing procedure to control for the overall size of the tests. We discuss this in more detail below.

Under the factor model settings, this task is relatively easy. From Pesaran et al. (2004) and Bailey et al.

(2019b), we can establish the asymptotic distribution for the error correlation coefficient under the null H0,ij :

ρij = 0 for a panel data regression yit = αi + β
⊺
i xit + ϵit, where var(ϵt) = Σ = (σij) is an n × n symmetric,

positive definite matrix. Denote the correlation coefficient of ϵit and ϵjt by ρij . To estimate the correlation

coefficient of errors, one needs to first obtain residuals ϵ̂it by ϵ̂it = yit − α̂i − β̂
⊺
i xit, where α̂i and β̂i are the

OLS estimates for the ith entity. The sample estimate of ρij is given by

ρ̂ij =
ϵ̂⊺i ϵ̂j/T

(ϵ̂⊺i ϵ̂i/T )
1/2(ϵ̂⊺j ϵ̂j/T )

1/2
.
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When the regressors xit are strictly exogenous, under the null H0,ij : ρij = 0,

√
T ρ̂ij =⇒ N (0, 1) as T → ∞. (14)

To test the hypothesis H0,ij : ρij = 0, for p being the chosen nominal size, we can use 1√
T
Φ−1(p/2) and

1√
T
Φ−1(1 − p/2) as the critical values, where Φ−1 is the inverse cdf of standard normal. However, to test

ρij = 0 for all i < j jointly, we need to take the multiple testing issue into account. From Bonferroni (1935),

given that there are ntest = n(n− 1)/2 such tests, if the family-wise error rate (FWER) is p, it is sufficient to

set the nominal size for each individual test as pi = p/ntest for i = 1, . . . , ntest, so that the critical values for

each ρ̂ij becomes 1√
T
Φ−1(p/2ntest) and

1√
T
Φ−1(1− p/2ntest).

4

The nice theoretical result from Equation 14 is derived under the assumption that all regressors are strictly

exogenous. However, for the spatial factor model, this is not the case. In Equation 11, the spatial autoregressive

term Wrt is endogenous, which makes the result from Equation 14 fail. Given that, we conduct inference using

the residual wild bootstrap as in Mammen (1993). Again, we need to correct for multiple testing issue here. The

critical values for each ρ̂ij are F
−1(p/2ntest) and F

−1(1− p/2ntest), where F is the empirical null distribution

of ρ̂bij for all i < j, b = 1, . . . , B.

4.3 Tests of Asset Pricing Restrictions

In this subsection, we study the econometric testing of the asset pricing restrictions derived in Section 3.

4.3.1 Risk Free Asset and Traded Asset Factors

The first case we consider is when there exists a risk-free asset with rate rf , and all factors are traded portfolios

(Equation 6). For exposition, we drop the notations (tildes and check), and write the multi-period spatial factor

model in terms of excess-returns as

rt = α+Bzt +ΨWrt + ϵt, (15)

where rt are asset excess returns and zt are the factor excess returns. From corollary 1, our testing problem is

H0 : α = 0.

Notice that equation Equation 15 can be written as a reduced form factor model:

rt = α
∗ +B∗zt + ϵ

∗
t , (16)

where α∗ = Gα, B∗ = GB, ϵ∗t = Gϵt, and G = (In −ΨW )−1. In particular, the error covariance matrix has

the form Σϵ∗ = G(Ψ)DσG(Ψ)⊺, where Dσ = diag(σ2). It follows that α = 0 if and only if α∗ = 0 under our

condition that G is finite and positive definite. Thus we test the hypothesis that α∗ = 0. We consider the Wald

statistic

W = T
α̂∗⊺Σ̂−1

ϵ∗ α̂
∗

1 + µ̂⊺
z Σ̂

−1
z µ̂z

, (17)

where α̂∗ is the multivariate least squares estimator of α∗, and

α̂∗ = µ̂r − B̂∗µ̂z, B̂∗ = Σ̂rzΣ̂
−1
z

4There are more advanced methods of choosing threshold values, like Bailey et al. (2019b). However, the theory does not go

through for testing error correlation of the spatial factor model. To have a fair comparison, we consider a simple Bonferroni type

of correction for both models.
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µ̂z =
1

T

T∑
t=1

zt, µ̂r =
1

T

T∑
t=1

rt, Σ̂rz =
1

T

T∑
t=1

(rt − µ̂r)(zt − µ̂z)⊺, Σ̂z =
1

T

T∑
t=1

(zt − µ̂z)(zt − µ̂z)⊺,

Σ̂−1
ϵ∗ = (In − Ψ̂W )

⊺
D−1
σ̂ (In−Ψ̂W ),

where Ψ̂ and σ̂2 = (σ̂2
1 , . . . , σ̂

2
n) are estimated from the structural model. The nice feature here is that Σ̂−1

ϵ∗ only

involves the inversion of the diagonal matrix Dσ̂ and so given the structural parameter estimates Ψ̂ and σ̂2 no

further regularization would be called for. One could also replace α̂∗ by α̂∗ = G(Ψ̂)α̂, where α̂ is estimated

from the structural model.

Proposition 1. Suppose there is a risk free rate rf and all factors are tradable portfolios. The spatial factor

model and its reduced form model are Equation 15 and Equation 16, respectively, and suppose that Assumptions

A1-A4 hold. Suppose further that Assumptions A5-A7 stated in the Appendix B hold. Then, under the null

hypothesis H0 : α = 0, the Wald statistic (Equation 17) satisfies for every n, as T → ∞

W =⇒ χ2(n). (18)

Remark 6. With the spatial interaction structure, the error covariance matrix Σϵ∗ only has O(n) free

parameters rather than O(n2) in the unrestricted case. Furthermore, Σ̂−1
ϵ∗ is a quadratic function of Ψ̂, which

is a diagonal matrix whose elements are chosen from a compact set Θψ by the structural model estimation.

Unlike the sample covariance matrix-based reduced form test, this tests works well for large n, as long as T is

large. When n is large, one can consider the following standardised Wald statistic

SW =
W − n√

2n
.

Under the null hypothesis, SW =⇒ N (0, 1) as T → ∞ and then n→ ∞ (sequential asymptotics).

4.3.2 Risk Free Asset and Some Non-Traded Asset Factors

Next, we consider the testing of APT restrictions when some factors are traded portfolios and others are not

(Equation 9). Similar to the previous case, we drop the notations (the tildes and lower bar) for exposition, and

write the multi-period structural model in this case as

rt = α+B1z1,t +B2f2,t +ΨWrt + ϵt. (19)

The reduced form is

rt = α
∗ +B∗

1z1,t +B∗
2f2,t + ϵ

∗
t , (20)

where α∗ = Gα,B∗
1 = GB1,B

∗
2 = GB2, ϵ

∗
t = Gϵt, and G = (In − ΨW )−1. From corollary 3, the asset

pricing restriction implies that our null is H0 : α = B2λ2 for some λ2 ∈ Rk2 . Note that this is equivalent to

H0 : α∗ = B∗
2λ2 for some λ2 ∈ Rk2 . This restriction may be written in the form

g(θs) = 0, (21)

where θs = (α∗⊺, vec(B∗
2)

⊺)⊺ and g(θs) = MB∗
2
α∗,MB∗

2
= In − B∗

2(B
∗
2
⊺B∗

2)
−1B∗

2
⊺. That is, the restriction

vector is nonlinear in a subset of the factor model parameters, and furthermore, since MB∗
2
is of rank n − k2

(there are only n − k2 restrictions), there is a redundancy in the n × 1 vector g, which will affect the limiting
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null distribution of g(θ̂s). The next task is to find the n × (n(k2 + 1)) Jacobian matrix J(θs) = ∂g(θs)/∂θ
⊺
s .

In particular, we show that this is

J(θs) = (MB∗
2
,−(α∗⊺B∗

2(B
∗
2
⊺B∗

2)
−1 ⊗MB∗

2
)) + (MB∗

2
,−(α∗⊺MB∗

2
⊗B∗

2(B
∗
2
⊺B∗

2)
−1)Kn,k2),

where Kn,k2 is the commutator matrix of dimensions nk2 × nk2 (see Magnus and Neudecker (2019)). More

details can be found in Appendix C.

To construct the test statistics, notice that the reduced form model (Equation 20) could be written as a

seemingly unrelated regression (SUR) rt = Θ∗xt + ϵ
∗
t , where Θ∗ = (α∗,B∗

1,B
∗
2) is the n× (K + 1) parameter

matrix, and xt = (1, z⊺1,t,f
⊺
2,t)

⊺. Let X be the T × (K + 1) matrix of covariate, and R be the T × n matrix of

responses, the QML estimator of Θ∗ is Θ̂∗ = R⊺X(X⊺X)−1. Denote θ∗ = vec(Θ∗) = (α∗⊺, vec(B∗
1)

⊺, vec(B∗
2))

⊺

and θ̂
∗
= vec(Θ̂∗). Then we have as T → ∞ :

√
T (θ̂

∗
− θ∗) =⇒ N (0, Vθ∗), (22)

Vθ∗ = A−1 ⊗ Σϵ∗ , A = lim
T→∞

E(
X⊺X

T
), (23)

Σϵ∗ = G(Ψ)DσG(Ψ)⊺, Dσ = diag(σ2). (24)

Letting θ̂s = (α̂∗⊺, vec(B̂∗
2)

⊺)⊺, we have as T → ∞
√
Tg(θ̂s) =⇒ N (0,Ωg) under the null, (25)

where Ωg = J(θs)VθsJ(θs)
⊺ and Vθs is the submatrix of Vθ∗ that corresponds to the θs components. The matrix

Ωg is singular because even though Vθs is nonsingular, the matrix J(θs) is of deficient rank as discussed above.

We next discuss how to estimate Ωg consistently. We may firstly estimate the Jacobian matrix J(θs) by

Ĵ = (MB̂∗
2
,−(α̂∗⊺B̂∗

2(B̂
∗
2
⊺B̂∗

2)
−1 ⊗MB̂∗

2
)) + (MB̂∗

2
,−(α̂∗⊺MB̂∗

2
⊗ B̂∗

2(B̂
∗
2
⊺B̂∗

2)
−1)Kn,k2),

where MB̂∗
2

= In − B̂∗
2(B̂

∗
2
⊺B̂∗

2)
−1B̂∗

2
⊺. We then estimate Vθ∗ by V̂θ∗ = (X⊺X/T )−1 ⊗ Σ̂ϵ∗ , and Σ̂ϵ∗ =

G(Ψ̂)Dσ̂G(Ψ̂)⊺, where Ψ̂ and σ̂2 = (σ̂2
1 , . . . , σ̂

2
n) are estimated from the structural model. With V̂θ∗ , we

can easily get V̂θs by only keeping the submatrix of V̂θ∗ that corresponds to the θs component. Then, Ωg could

be consistently estimated by

Ω̂g = ĴV̂θs Ĵ
⊺.

However, since Ωg itself is not invertible, we must define a suitable generalized inverse of Ω̂g to construct

the Wald statistic. The key issue identified in Andrews (1987) is to make sure that the estimator of Ωg has the

same rank as Ωg itself, i.e., has rank n− k2. In that case, the estimator of Ω+
g will be consistent. We proceed

as follows. Let λ̂1 ≥ · · · ≥ λ̂n ≥ 0 be the ordered eigenvalues of the positive semidefinite matrix Ω̂g, and let

Q̂ be an orthonormal matrix such that Ω̂g = Q̂Λ̂Q̂⊺, where Λ̂ = diag(λ̂1, . . . , λ̂n). We can construct a suitable

reduced rank estimator of Ω̂g by using the principal components associated with the largest n− k2 eigenvalues

of the estimated covariance matrix under a guarantee that they are positive. Specifically, let

λ̃j = λ̂j1(λ̂j > 0) + δT 1(λ̂j = 0), j = 1, . . . , n− k2,

where δT + T−1/2δ−1
T → 0 is a regularization sequence.5 Let Λ̃+ = diag(λ̃−1

1 , . . . , λ̃−1
n−k2 , 0, . . . , 0) and

Ω̂+
g = Q̂Λ̃+Q̂⊺. (26)

5In practice we have found regularization to be unnecessary, i.e., the largest n− k2 empirical eigenvalues in our application are

all strictly positive.
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This satisfies the Andrews (1987) conditions. Then define the Wald statistic

W = Tg(θ̂s)
⊺Ω̂+

g g(θ̂s). (27)

Proposition 2. Suppose that there is a risk free rate rf . Out of K common risk factors, the first k1

factors are tradable and the rest k2 factors are not. The spatial factor model and its reduced form model are

Equation 19 and Equation 20, respectively, and suppose that Assumptions A1-A4 hold. Suppose further that

Assumptions A5-A7 stated in the Appendix hold. Then, under the null H0 : α = B2λ2 for some λ2 ∈ Rk2 , for

T → ∞, the Wald statistic (Equation 27)

W =⇒ χ2(n− k2). (28)

Remark 7. The test could also be conducted using structural model (Equation 19), and we test the null

H0 : α = B2λ2 for some λ2 ∈ Rk2 . Aquaro et al. (2020) has established the asymptotic normality of the QMLE

of the structural parameters, and they provided the consistent estimation of the asymptotic variance-covariance

matrix of the QML estimator. Using their theoretical results (details could be found in Appendix B), we can

easily construct the test using the structural spatial factor model. In the case without a risk free rate, the

reduced form test of the restrictions α∗ =1λ0 +B∗
2λ2 can be treated similarly.

Remark 8. Unlike in the case with only traded factors, the estimator Ω̂+
g is derived from ĴV̂θs Ĵ

⊺, which

does not exploit the invertibility of V̂θ∗ . In fact, it is possible to derive an alternative generalized inverse based

on the singular value decomposition of Ĵ and6

V̂ −1
θ∗ =

X⊺X

T
⊗ Σ̂−1

ϵ∗ =
X⊺X

T
⊗ (In − Ψ̂W )

⊺
D−1
σ̂ (In−Ψ̂W ).

See details of how to derive the generalized inverse using this second method in Appendix C. In simulation

studies we have found the two methods perform similarly and in particular Equation 26 is computationally

convenient.

Proofs of proposition 1 and proposition 2 can be found in Appendix C.

5 Simulation Study

We examine the performance of those tests by Monte Carlo experiments. We consider a five-factor model:

rit = αi + β
⊺
i f t + ψi

N∑
j=1

wijrjt + ϵit.

As in Fan et al. (2015), we simulate {βi}ni=1 , {f t}Tt=1, and {ϵit}n,Ti,t=1 independently fromN5(µb,Σb), N5(µf ,Σf ),

and N (0, σ2), respectively. The parameters µb,Σb,µf ,Σf , σ
2 are calibrated using Fama-French five factors and

S&P 500 stocks from January 2004 to December 2015. For the spatial component, we simulate ψi ∼ N (0.4, 0.1)

independently for i = 1, . . . , n. And to construct the adjacency matrix W , we simulate a random network

where each pair of nodes has a linking probability p = 0.1. The Leontief inverse matrix is then calculated as

G = (In −ΨW )−1, where Ψ = diag(ψ1, . . . , ψn).

6We are grateful to Alexei Onatskiy for pointing this out.
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When all factors are traded, the null is α = 0. To evaluate the size of the test, αi = 0 for i = 1, . . . , n. To

evaluate the power of the test, we generate αi ∼ N (0, 1) independently for i = 1, . . . , int( 1
20n), where int(x)

gives the integer part of x. This is a sparse alternative, with 5% of the individual αi different from zero. After

obtaining α = (α1, . . . , αn)
⊺,B = (β1, . . . ,β5),f t, ϵt = (ϵ1t, . . . , ϵnt)

⊺, and G, rt = (r1t, . . . , rnt)
⊺ can be

calculated as rt = Gα+GBf t +Gϵt, for t = 1, . . . , T .

In the case where there is a combination of tradable and non-tradable factors, we assume that the last two

factors are not tradable with risk premiums λ2 = (1, 1)⊺. To evaluate the size of the test, we generate the

null using α = B2λ2, where B2 = (β4,β5). And to evaluate the power of the test, we generate vi ∼ N (0, 1)

independently for i = 1, . . . , int( 1
20n), and calculate α = B2λ2 + v. Similar to the previous case, we calculate

rt by rt = Gα+GBf t +Gϵt for t = 1, . . . , T .

Table 1 and Table 2 present the empirical size and power of each testing method. When T is not large

enough, the tests exhibit excessive size distortions and over-reject. This is expected as the consistent estimation

of the heterogeneous spatial model requires large T . For example, when T = 100, the size of both tests is

always higher than 10% for all different values of n. And the size distortions are bigger for larger n due to the

accumulation of estimation errors. When we increase T to 500, the size distortions drop substantially. And

when T is sufficiently large, the empirical size of both tests is very close to the 5% nominal level for all n values.

When it comes to the power of the tests, both tests have very high empirical power for all (n, T ) combinations

that we consider. For the (n, T ) combination that is close to our empirical application, both tests exhibit the

correct size, and have power of one.

Size (%) Power (%)

(n/T ) 100 500 1000 3000 100 500 1000 3000

50 16.10% 6.00% 6.50% 6.20% 97.80% 99.80% 99.88% 100.00%

200 31.70% 8.45% 5.95% 6.00% 100.00% 100.00% 100.00% 100.00%

500 52.20% 11.55% 6.00% 5.80% 100.00% 100.00% 100.00% 100.00%

Table 1: Size and Power of tests for H0 : α = 0 when all factors are tradable portfolios. Tests are conducted at

5% significance level and results are based on 2000 replications.

Size (%) Power (%)

(n/T ) 100 500 1000 3000 100 500 1000 3000

50 14.50% 6.00% 7.00% 6.80% 80.60% 96.80% 99.88% 100.00%

200 26.55% 8.40% 6.70% 6.00% 99.40% 100.00% 100.00% 100.00%

500 46.60% 9.40% 6.00% 5.80% 100.00% 100.00% 100.00% 100.00%

Table 2: Size and Power of tests for H0 : α = B2λ2 when the the last two factors are not tradable portfolios.

Tests are conducted at 5% significance level and results are based on 2000 replications.

6 Empirical Study

We use daily returns of S&P 500 stocks for our application. All the stock market related data are from the

Center for Research in Security Prices (CRSP). Daily factor returns and industry classification information are
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obtained from Kenneth French’s website. Accounting data are from the merged CRSP/Compustat database.

Data used to construct alternative networks are described in detail in Section 6.1.3.

The news data are obtained from RavenPack Equity files Dow Jones Edition from January 2004 to December

2015. This comprehensive news dataset combines relevant content from multiple sources, including Dow Jones

Newswires, Wall Street Journal, and Barron’s MarketWatch, which produce the most actively monitored streams

of news articles in the financial system. Each unique news story (identified by unique story ID) tags the

companies mentioned in the news by their unique and permanent entity identifier codes (RP ENTITY ID), by

which we link to stock identifier TICKER and PERMNO.

Inspired by Scherbina and Schlusche (2015) and Schwenkler and Zheng (2019), we identify links by news

co-mentioning. To be more specific, if a piece of business news reports two and only two companies together,

then the two firms share a link. Although news that mentions more than two companies together may carry

potential information about links, they provide noisier information. We also remove news with topics including

analyst recommendations, rating changes, and index movements as these types of news might stack multiple

companies together when they actually do not imply any real links. Table 14 provides descriptive statistics for

RavenPack Equity files Dow Jones Edition dataset during the sample period. Since our comprehensive news

dataset combines several sources, given a similar length of sample period, the number of unique news stories

is more than ten times larger than that from Scherbina and Schlusche (2015) and more than eight hundred

times than that from Schwenkler and Zheng (2019). For link identification purposes, we only use sample news

that (1) is not about the topics mentioned above, (2) tags S&P 500 companies, and (3) mentions exactly two

companies, which gives a subsample of 1, 637, 256 unique news stories.

From all the links identified using this methodology, some links are transitory while some are more long-

lasting. To gauge the persistency of links, we split full sample news data into 12 yearly link identification

windows. Table 15 is the frequency distribution table of the number of yearly link identification windows that

a pair gets identified as economic neighbors for all possible pairs (i, j) in our sample. 72.80% of the pairs never

get co-mentioned during the sample period. For all the linked pairs (i, j) identified throughout the sample

period, 49.6% of them are only mentioned in one yearly window. We consider those pairs as temporarily linked.

They could get co-mentioned multiple times within a yearly window. But out of that one-year window, they

are never mentioned together. To further reduce noise, we say a pair (i, j) has persistent economic relationships

if they are identified in more than a certain number (1 ≤ m ≤ 11) of yearly identification windows. For the

construction of full sample adjacency matrix W , we set wij to the number of times i and j are co-mentioned

throughout the sample if the pair (i, j) gets co-mentioned in more than m yearly identification windows (i.e.,

their link is persistent), and to zero otherwise.

Table 16 presents the number of identified pairs aggregated at industry level for threshold m = 1. Results for

higher threshold values are shown in Table 17, and Table 18. We classify stocks into Fama-French 12 industries

based on their Standard Industrial Classification (SIC) code. Compared with companies from other industries,

financial companies, hi-tech companies, and manufacturing companies are more connected. Another important

feature is that there are a lot of intra-industry links. Except for some industries with very few stocks like

Durables and Telecommunication, whose statistics should be interpreted with care, other industries all have a

high percentage of intra-industry links. Comparing tables of adjacency matrices with different threshold values

m, we can tell that although higher threshold values reduce the absolute number of identified pairs, the relative

industry level network remains quite stable.
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6.1 Results

6.1.1 Main Results

For full sample estimation, we keep S&P 500 stocks that have no missing observations from 2004 to 2015,

which leaves us n = 394 stocks. Adjacency matrix W contains all the persistent links (for different thresholds

m) identified throughout the sample. As a convention in spatial econometrics, we apply row-normalization

to the raw adjacency matrix so that
∑n
j wij = 1 for all i = 1, . . . , n. We investigate several models under

the framework where there are only tradable factors, and asset returns and factor returns are in excess of the

risk-free rate (Equation 15).

• Model 1: Spatial CAPM model

rt = α+ β1zMRT,t +ΨWrt + ϵt. (29)

• Model 2: Spatial factor model with Fama-French three factors

rt = α+ β1zMRT,t + β2zSMB,t + β3zHML,t +ΨWrt + ϵt. (30)

• Model 3: Spatial factor model with Fama-French five factors

rt = α+ β1zMRT,t + β2zSMB,t + β3zHML,t + β4zRMW,t + β5zCMA,t +ΨWrt + ϵt. (31)

• Model 4: Spatial factor model with Fama-French five plus Momentum factor

rt = α+ β1zMRT,t + β2zSMB,t + β3zHML,t + β4zRMW,t + β5zCMA,t + β6zMOM,t +ΨWrt + ϵt. (32)

• Model 5: Spatial factor model with Fama-French five plus Momentum factor and Media Attention factor7

rt = α+β1zMRT,t+β2zSMB,t+β3zHML,t+β4zRMW,t+β5zCMA,t+β6zMOM,t+β7zMA,t+ΨWrt+ϵt.

(33)

For each model, the (n(K + 3)) parameters are estimated using quasi maximum likelihood (QML). Given the

huge amount of parameters in the model, here we only report some important summary statistics of the estimates

in Table 3.8 For a heterogeneous coefficient panel model, what is often of interest to empirical researchers is the

mean of the individual-specific parameters across all entities (or entities within some sub-groups). If we assume

that individual-specific coefficients are randomly distributed around their common means as follows:

βk,i = βk + ζk,i, ψi = ψ + ςi for k = 1, . . . ,K, and i = 1, . . . , n.

ηi = (ζ⊺i , ςi)
⊺ ∼ IID(0,Ωη).

The common mean parameters βk for k = 1, . . . ,K and ψ are the the objects of interest, and they can be

consistently estimated with the following mean group (MG) estimator given n and T are both large, with

7We thank an anonymous referee for pointing out that there might be a competing channel that drives our empirical results.

Stocks that attract media attention behave differently than stock that are not covered by the media (Fang and Peress (2009),

Barber and Odean (2008)). We include a media-attention factor that is constructed using the methodology from Fang and Peress

(2009) to control for that competing channel.
8Full estimation results can be requested from the authors.
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√
n/T → 0. 9

β̂MG
k =

1

n

n∑
i=1

β̂k,i for k = 1, . . . ,K, and ψ̂MG =
1

n

n∑
i=1

ψ̂i.

For a heterogeneous coefficient spatial model, we can only identify the spatial coefficients of those units with

at least one link. Spatial coefficients of those units with zero links cannot be identified, and we need to restrict

them to be zeros. If we apply the full sample adjacency matrix W discussed above with threshold value m = 1,

only n0 = 7 out of n = 394 companies do not have any long-run links. Np = n−n0 = 387 units have unrestricted

spatial coefficients. In contrast, individual-specific factor coefficients and intercepts are identified for all units,

with Np = n = 394.

We estimate Model 1 - Model 5 (Equation 29 to Equation 33). In Table 3, we report the mean group

estimates with their standard errors, and the percentages of entities with statistically significant parameters

at 5% level (with multiple testing correction) when the threshold value m = 1. In Appendix D, Results for

alternative thresholds m are reported in Table 19 and Table 20. We also report sub-sample estimation results

in Table 21.

To address the multiple testing issue, we employ two methods. For factor loadings and spatial parameters,

we use a simple Bonferroni correction (Bonferroni (1935)).10 As a complement to the joint test of H0 : α = 0

proposed in Section 4.3, we also perform individual statistical tests for alphas. Finding alphas that significantly

deviate from zero is a central question in finance. Since we are conducting individual tests with many test

assets, a non-negligible number of alphas could be non-zero purely due to chance. To address this issue, we

adopt the technique developed in Barras et al. (2010). With this approach, we could estimate the proportion of

zero alphas with the false discovery rate (FDR) under control. To be more specific, We conduct the following

procedure:

1. Given the collection of p−values {pi, i = 1, . . . , n}, for a sufficiently high threshold λ∗, the proportion of

alphas that are zero can be estimated with π̂0(λ
∗) = Ŵ (λ∗)

n
1

1−λ∗ , where Ŵ (λ∗) gives the number of alphas

with p values that are larger than λ∗. And the optimal threshold value λ∗ is selected using a bootstrap

procedure that minimizes the estimated mean squared error of π̂0(λ) (see Storey (2002)).

2. With an estimate of the proportion of zero-alpha stocks π̂0, for any significance level γ, we can calculate

the percentage of false discoveries by π̂0 ∗ γ.

3. For any significance level γ, the percentage of individually significant alphas without multiple testing

corrections is Sγ . Subtracting the estimate of the percentage of false discoveries from that, we may get

the percentage of individually significant alphas with multiple testing corrections as Tγ = Sγ − π̂0 ∗ γ.
9See Pesaran and Smith (1995) for proofs of the consistency when individual-specific coefficients are independently distributed.

Recent developments by Chudik and Pesaran (2019) prove the consistency under weakly correlated individual-specific estimators.

In both cases, T and n are required to be large with
√
n/T → 0. Intuitively, big T is required for the consistent estimation of

individual-specific coefficients, and n needs to be big enough for the consistent estimation of the means. To see how the mean

group estimators behave in the context of heterogeneous coefficient spatial model, see Aquaro et al. (2020).
10In the main text, we show the results with Bonferroni correction for simplicity. Other multiple testing techniques that are less

conservative could also be applied.
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(1) Factor Component (2) Spatial Component

α β1 β2 β3 β4 β5 β6 β7 ψ

(1) Spatial CAPM

Mean Group Estimates 0.014 0.564 0.447

( 0.001) ( 0.021) ( 0.019)

% significant (at 5% level) 3.1% 79.4% 73.3%

Np 394 394 387

(2) Spatial Factor Model (with FF3)

Mean Group Estimates 0.013 0.528 0.127 -0.141 0.491

( 0.001) ( 0.021) ( 0.014) ( 0.023) ( 0.019)

% significant (at 5% level) 1.7% 74.4% 51.0% 69.0% 75.1%

Np 394 394 394 394 387

(3) Spatial Factor Model (with FF5)

Mean Group Estimates 0.012 0.541 0.142 -0.140 0.139 0.176 0.496

( 0.001) ( 0.021) ( 0.014) ( 0.023) ( 0.022) ( 0.021) ( 0.019)

% significant (at 5% level) 2.0% 75.1% 51.5% 68.0% 50.3% 47.5% 76.4%

Np 394 394 394 394 394 394 387

(4) Spatial Factor Model (with FF5+MOM)

Mean Group Estimates 0.012 0.549 0.143 -0.148 0.137 0.181 -0.018 0.487

( 0.001) ( 0.022) ( 0.014) ( 0.021) ( 0.022) ( 0.021) ( 0.007) ( 0.019)

% significant (at 5% level) 1.4% 75.4% 51.3% 62.4% 49.7% 47.5% 30.5% 74.9%

Np 394 394 394 394 394 394 394 387

(5) Spatial Factor Model (with FF5+MOM+MA)

Mean Group Estimates 0.014 0.550 0.103 -0.104 0.118 0.146 -0.030 -0.185 0.492

( 0.001) ( 0.022) ( 0.013) ( 0.019) ( 0.021) ( 0.022) ( 0.007) ( 0.023) ( 0.019)

% significant (at 5% level) 2.5% 75.6% 41.6% 53.8% 45.7% 44.9% 26.9% 41.4% 74.4%

Np 394 394 394 394 394 394 394 394 387

Table 3: QML estimation results of Equation 29 to Equation 33 using full sample. Note: threshold

m = 1. For each panel, the first row gives the mean group (MG) estimates for the parameters with their

standard errors in the parenthesis. The third row of each panel gives the percentages of unrestricted units with

statistically significant parameters at 5% level (with multiple testing correction), and the last row gives the

number of unrestricted units Np for each parameter.

The contemporaneous local dependence parameter ψ is highly statistically significant under all specifications.

Local dependence also exhibit strong economic importance as the mean group estimates of ψ are around 0.45−

0.50 over the five models we consider. This magnitude is comparable to the average strength of the market

factor, with the mean group estimate of market beta lying between 0.53 − 0.56 across models. Comparing

different models, we find that adding more common risk factors does not weaken the estimated strength of

local dependence. The magnitude of the mean group estimate and the proportion of entities with statistically

significant spatial parameter at 5% level do not change with the number of factors we include.

Multiple testing issue is taken into account when we calculate the proportion of individually significant

parameters. Among 387 unrestricted contemporaneous spatial coefficients ψi, more than 70% of them are

individually significant under all cases.11 This high significance ratio implies that the linkage identification

method based on news co-mentioning successfully detects the relevant links. If our data contained a lot of

spurious links, we would see the individual specific spatial parameters to be insignificant for many entities.

11We report the results with a conservative Bonferroni correction (Bonferroni (1935)) for its simplicity. If we adopt a less

conservative multiple testing correction, say the B-H procedure (Benjamini and Hochberg (1995)), we will have more than 85% of

the individual ψi that is significant for all specifications that we consider.
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Apart from those models with only tradable factors, we also investigate the below model with a mixture of

both tradable and non-tradable factors (Equation 19).

• Model 6: Spatial factor model with 7 tradable factors (Fama-French five plus Momentum factor and Media

Attention), and 4 macro factors (Default Spread, Term Spread, Trend, Dividend Yield)

rt =α+ β1zMRT,t + β2zSMB,t + β3zHML,t + β4zRMW,t + β5zCMA,t + β6zMOM,t ++β7zMA,t

+ β8fDS,t + β9fTS,t + β10fTR,t + β11fDY,t +ΨWrt + ϵt.
(34)

We use daily observations the same set of macro factors from Aı̈t-sahali and Brandt (2001) and Connor et al.

(2021).

• Default Spread (DS) is the yield difference between Moody’s Baa and Aaa rated bonds.

• Term Spread (TS) is the yield difference between 10 and 1 year government bonds.

• Trend (TR) is the difference between the log of the current S&P 500 index level and the log of the

average index level over the previous 12 months.

• Dividend Yield (DY), also called Dividend-to-Price, is the sum of dividends paid on the S&P 500 index

over the past 12 months divided by the current level of the index.

α β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 ψ

(6) Spatial Factor Model (with all traded factors and macro factors)

MG 0.013 0.551 0.103 -0.103 0.119 0.146 -0.029 -0.186 -0.021 0.001 -0.058 3.891 0.491

( 0.001) ( 0.022) ( 0.013) ( 0.019) ( 0.021) ( 0.022) ( 0.007) ( 0.023) ( 0.005) ( 0.002) ( 0.032) ( 1.135) ( 0.019)

%sig 2.7% 76.4% 41.4% 53.8% 45.9% 44.7% 27.4% 41.4% 0.0% 0.0% 0.3% 0.3% 74.1%

Np 394 394 394 394 394 394 394 394 394 394 394 394 387

Table 4: QML estimation results of Equation 34 to using full sample. Note: threshold m = 1. The first

row gives the mean group (MG) estimates for the parameters with their standard errors in the parenthesis. The

third row gives the percentages of unrestricted units with statistically significant parameters at 5% level (with

multiple testing correction), and the last row gives the number of unrestricted units Np for each parameter.

Full sample estimation results are reported in Table 4. One observation we make is that macro factors are

not very significant in general. The mean group estimates of betas associated with default spread and dividend

yield are only marginally significant. With a conservative multiple testing adjustments, the percentages of

individually significant betas for macro factors are very low.12 This result is not surprising given that we use

daily data, and we expect these macro factors to play a more important role if we turn to data of lower frequency.

Other results remain the same as from the previous case.

A large proportion of the news-implied links that we identify are intra-industry links. It has been documented

widely that stocks within the same industry exhibit excess co-movement beyond what can be explained by

common risk factors at the market level (Moskowitz and Grinblatt (1999), Fan et al. (2016), Engelberg et al.

(2018)). In order to control for industry factors as an additional source of co-movement, we further augment

12A less conservative B-H procedure leads to a slight increase in the percentages.
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Equation 29 to Equation 33 and Equation 34 with industry factors.

rt = α+Bzt + βIfIND,t +ΨWrt + ϵt.

rt = α+B1z1,t +B2f2,t + βIfIND,t +ΨWrt + ϵt.
(35)

We use Fama French 12 equal-weighted industry portfolios. We choose to use broad industry classification and

equal weighting. This is because we are dealing with S&P 500 stocks, and we do not want industry returns to

be dominated by several large stocks within that industry.

Table 5 and Table 6 report the estimation results for models augmented with the industry factor. The

Industry factor is highly significant in all cases, and the mean group estimate of industry beta lies between

0.39− 0.43. The introduction of the industry factor largely weakens the estimated effect of the market factor,

and the average market beta is reduced to 0.21−0.26. On the other hand, the magnitude of local dependence is

only slightly reduced by the introduction of the industry factor. This shows that our results are not driven by

exposure to common industry-level shocks but by granular interactions. Using other equal-weighted industry

factors does not affect this finding.

(1) Factor Component (2) Spatial Component

α β1 β2 β3 β4 β5 β6 β7 βI ψ

(1) Spatial CAPM+Industry

MG 0.007 0.246 0.392 0.389

( 0.002) ( 0.024) ( 0.021) ( 0.018)

% Sig 2.9% 65.0% 68.8% 67.5%

Np 394 394 394 387

(2) Spatial Factor Model (with FF3+Industry)

MG 0.004 0.217 -0.110 -0.157 0.427 0.419

( 0.002) ( 0.025) ( 0.018) ( 0.019) ( 0.026) ( 0.018)

% Sig 2.8% 62.7% 53.6% 66.2% 66.0% 70.1%

Np 394 394 394 394 394 387

(3) Spatial Factor Model (with FF5+Industry)

MG 0.003 0.229 -0.100 -0.166 0.112 0.204 0.424 0.426

( 0.002) ( 0.025) ( 0.017) ( 0.020) ( 0.019) ( 0.017) ( 0.025) ( 0.018)

% Sig 2.9% 61.9% 49.7% 65.2% 39.8% 42.4% 67.0% 69.5%

Np 394 394 394 394 394 394 394 387

(4) Spatial Factor Model (with FF5+MOM+Industry)

MG 0.003 0.237 -0.097 -0.155 0.109 0.197 0.006 0.417 0.425

( 0.002) ( 0.026) ( 0.018) ( 0.018) ( 0.019) ( 0.017) ( 0.007) ( 0.025) ( 0.018)

% Sig 2.6% 63.5% 49.7% 58.6% 39.6% 41.9% 23.9% 67.0% 67.8%

Np 394 394 394 394 394 394 394 394 387

(5) Spatial Factor Model (with FF5+MOM+MA+Industry)

MG 0.005 0.253 -0.108 -0.127 0.098 0.176 -0.002 -0.104 0.397 0.429

( 0.002) ( 0.025) ( 0.017) ( 0.017) ( 0.019) ( 0.017) ( 0.006) ( 0.017) ( 0.024) ( 0.019)

% Sig 2.6% 62.7% 47.2% 47.7% 38.1% 39.8% 21.8% 28.7% 64.0% 70.1%

Np 394 394 394 394 394 394 394 394 394 387

Table 5: QML estimation results of spatial factor models augmented with the industry factor

(Equation 35 where z includes only tradable factors) using full sample. W is constructed using

threshold m = 1.
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α β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 βI ψ

(6) Spatial Factor Model (with all traded factors and macro factors+Industry)

MG 0.004 0.252 -0.109 -0.129 0.098 0.179 -0.003 -0.101 -0.022 0.008 -0.221 -1.847 0.401 0.428

( 0.002) ( 0.026) ( 0.017) ( 0.017) ( 0.019) ( 0.017) ( 0.006) ( 0.017) ( 0.005) ( 0.002) ( 0.032) ( 1.126) ( 0.025) ( 0.018)

%sig 3.1% 62.9% 48.0% 48.2% 38.3% 39.8% 21.3% 28.4% 0.0% 0.0% 0.8% 0.5% 63.5% 69.0%

Np 394 394 394 394 394 394 394 394 394 394 394 394 394 387

Table 6: QML estimation results of spatial factor models augmented with the industry factor

(Equation 35 where z1 includes all tradable factors and f2 includes all macro factors) using full

sample. W is constructed using threshold m = 1.

So far, we have shown the mean group estimation results for whole sample companies. It is also interesting

to gauge heterogeneity at sub-group levels. It is reasonable to suspect that the average sensitivities to local

risk spillovers are different for different industry groups. To explore this heterogeneity, we adopt the random

coefficient assumptions at the industry level. Subscript g denotes industry membership, and we classify stocks

into six broad industries. 13

βk,i,g = βk,g + ζk,i,g; ψi,g = ψg + ςi,g,

ηi,g = (ζ⊺i,g, ςi,g)
⊺ ∼ IID(0,Ωη),

where k = 1, . . . ,K, i = 1, . . . , n, and g = 1, . . . , G. The industry-level common mean parameters for industry

g can be consistently estimated when ng, the number of cross-sectional units within that industry, is large by

β̂MG
k,g =

1

ng

∑
i∈Ng

β̂k,i,g ; ψ̂MG
g =

1

ng

∑
i∈Ng

ψ̂i,g,

for k = 1, . . . ,K, and g = 1, . . . , G.

To save space, we only report the mean group estimates by industry for the two largest spatial factor models

(Equation 33 and Equation 34) in Table 7 and Table 8. Their counterparts with the industry factor are presented

in Table 22 and Table 23 in Appendix D. The tables reveal that our main conclusions that equity returns are

affected by that of their economic neighbors are very robust to the industry disaggregation. Local dependence is

highly significant for stocks in all six industries, and the magnitudes of dependence show a considerable degree

of heterogeneity across industries. The industrial mean group estimates of the spatial parameter are between

0.36− 0.60. After controlling for the industry factor, the estimates still range from 0.31− 0.56.

13We adopt broad industry classification to guarantee that there are a large number of stocks within each industry since mean

group estimation requires large ng to be consistent. We build the industry classification on top of the Fama-French five industry

definitions where they classify all stocks according to their SIC code into five broad groups: “Consumer”, “Health”, “Hi-tech”,

“Manufacturing” and “Others”. For the first four categories, we keep the same definitions as Fama and French. Since there are a

large proportion of financial companies in the S&P500 universe, it would be interesting to separate financial firms from those in

the “Others” category. Among the stocks that fall into “Others”, we categorize the stocks with a SIC in the range 6000− 6799 as

“Finance” and put the remaining in the “Others” category.
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(1) Factor Component (2) Spatial Component
α β1 β2 β3 β4 β5 β6 β7 ψ

Panel A: Finance

MG 0.013 0.490 0.134 0.359 0.041 -0.019 -0.070 0.306 0.567

( 0.003) ( 0.058) ( 0.032) ( 0.060) ( 0.060) ( 0.049) ( 0.019) ( 0.061) ( 0.047)

% Sig(at 5%) 0.0% 64.7% 42.6% 64.7% 38.2% 25.0% 29.4% 45.6% 79.4%

Non-zero coef. 68 68 68 68 68 68 68 68 68

Panel B: Consumer

MG 0.016 0.514 0.149 -0.203 0.287 0.362 -0.060 -0.152 0.426

( 0.003) ( 0.044) ( 0.033) ( 0.023) ( 0.027) ( 0.030) ( 0.016) ( 0.025) ( 0.040)

% Sig(at 5%) 4.0% 76.0% 50.7% 54.7% 48.0% 52.0% 24.0% 17.3% 73.3%

Non-zero coef. 75 75 75 75 75 75 75 75 75

Panel C: Health

MG 0.026 0.490 0.011 -0.387 -0.155 0.145 0.077 -0.067 0.368

( 0.007) ( 0.067) ( 0.043) ( 0.037) ( 0.054) ( 0.048) ( 0.022) ( 0.040) ( 0.059)

% Sig(at 5%) 14.3% 85.7% 28.6% 89.3% 25.0% 25.0% 32.1% 14.3% 82.1%

Non-zero coef. 28 28 28 28 28 28 28 28 28

Panel D: Hi-tech

MG 0.016 0.645 0.129 -0.381 -0.307 0.254 -0.048 -0.153 0.418

( 0.004) ( 0.045) ( 0.030) ( 0.027) ( 0.047) ( 0.041) ( 0.013) ( 0.028) ( 0.043)

% Sig(at 5%) 5.7% 87.1% 35.7% 72.9% 40.0% 38.6% 14.3% 18.6% 68.1%

Non-zero coef. 70 70 70 70 70 70 70 70 69

Panel E: Manufacturing

MG 0.009 0.540 0.019 -0.057 0.366 0.020 0.013 -0.505 0.591

( 0.002) ( 0.044) ( 0.022) ( 0.023) ( 0.023) ( 0.053) ( 0.013) ( 0.041) ( 0.037)

% Sig(at 5%) 0.0% 71.7% 41.6% 27.4% 65.5% 61.1% 36.3% 72.6% 84.1%

Non-zero coef. 113 113 113 113 113 113 113 113 107

Panel F: Others

MG 0.011 0.628 0.218 -0.155 0.173 0.190 -0.070 -0.320 0.433

( 0.004) ( 0.069) ( 0.041) ( 0.047) ( 0.044) ( 0.057) ( 0.020) ( 0.055) ( 0.067)

% Sig(at 5%) 0.0% 77.5% 42.5% 50.0% 22.5% 45.0% 20.0% 50.0% 77.5%

Non-zero coef. 40 40 40 40 40 40 40 40 40

Table 7: QML estimation results of spatial factor model with Fama-French five factors plus Mo-

mentum and Media-Attention factor (Equation 33). Parameters summarized by industry.

α β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 ψ

Panel A: Finance

MG 0.013 0.493 0.134 0.359 0.038 -0.018 -0.071 0.309 -0.011 0.010 -0.289 -3.400 0.566

( 0.003) ( 0.058) ( 0.032) ( 0.060) ( 0.060) ( 0.049) ( 0.019) ( 0.060) ( 0.011) ( 0.004) ( 0.094) ( 3.158) ( 0.047)

%sig 0.0% 64.7% 42.6% 64.7% 38.2% 25.0% 29.4% 45.6% 0.0% 0.0% 1.5% 1.5% 79.4%

Np 68 68 68 68 68 68 68 68 68 68 68 68 68

Panel B: Consumer

MG 0.015 0.514 0.149 -0.202 0.288 0.362 -0.059 -0.152 -0.016 -0.001 -0.037 3.421 0.426

( 0.003) ( 0.044) ( 0.033) ( 0.023) ( 0.026) ( 0.030) ( 0.015) ( 0.025) ( 0.010) ( 0.003) ( 0.068) ( 2.507) ( 0.040)

%sig 4.0% 76.0% 50.7% 54.7% 48.0% 52.0% 25.3% 17.3% 0.0% 0.0% 0.0% 0.0% 73.3%

Np 75 75 75 75 75 75 75 75 75 75 75 75 75

Panel C: Health

MG 0.026 0.489 0.011 -0.388 -0.154 0.145 0.076 -0.068 -0.015 0.008 0.110 3.031 0.369

( 0.007) ( 0.067) ( 0.043) ( 0.038) ( 0.054) ( 0.048) ( 0.021) ( 0.039) ( 0.023) ( 0.006) ( 0.094) ( 4.975) ( 0.059)

%sig 17.9% 85.7% 25.0% 89.3% 25.0% 25.0% 32.1% 14.3% 0.0% 0.0% 0.0% 0.0% 82.1%

Np 28 28 28 28 28 28 28 28 28 28 28 28 28

Panel D: Hi-tech

MG 0.016 0.646 0.128 -0.380 -0.308 0.253 -0.047 -0.154 -0.035 0.010 -0.096 7.012 0.417

( 0.004) ( 0.045) ( 0.029) ( 0.027) ( 0.047) ( 0.041) ( 0.013) ( 0.028) ( 0.013) ( 0.004) ( 0.078) ( 2.607) ( 0.043)

%sig 5.7% 87.1% 37.1% 72.9% 40.0% 38.6% 14.3% 17.1% 0.0% 0.0% 0.0% 0.0% 66.7%

Np 70 70 70 70 70 70 70 70 70 70 70 70 69

Panel E: Manufacturing

MG 0.009 0.539 0.020 -0.055 0.369 0.019 0.015 -0.508 -0.020 -0.012 0.113 8.233 0.591

( 0.002) ( 0.044) ( 0.022) ( 0.023) ( 0.023) ( 0.053) ( 0.012) ( 0.041) ( 0.008) ( 0.002) ( 0.051) ( 1.833) ( 0.037)

%sig 0.0% 73.5% 40.7% 27.4% 66.4% 60.2% 36.3% 73.5% 0.0% 0.0% 0.0% 0.0% 84.1%

Np 113 113 113 113 113 113 113 113 113 113 113 113 107

Panel F: Others

MG 0.011 0.630 0.219 -0.156 0.173 0.193 -0.071 -0.318 -0.031 0.003 -0.236 0.045 0.433

( 0.004) ( 0.069) ( 0.041) ( 0.047) ( 0.044) ( 0.057) ( 0.020) ( 0.055) ( 0.015) ( 0.005) ( 0.095) ( 3.408) ( 0.067)

%sig 0.0% 80.0% 42.5% 50.0% 22.5% 45.0% 22.5% 50.0% 0.0% 0.0% 0.0% 0.0% 77.5%

Np 40 40 40 40 40 40 40 40 40 40 40 40 40

Table 8: QML estimation results of spatial factor model with all seven tradable factors and all

four macro factors (Equation 34). Parameters summarized by industry.
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Financial companies have the largest exposure to their neighbors’ shocks. And this high level of sensitivity

to local shocks cannot be explained by exposures to common industry shocks as the mean group estimate of

common spatial parameter stays unchanged with the introduction of the industry factor. After controlling for

the industry factor, the mean group estimate of ψg for the financial industry is still as large as 0.55 (0.05). By

contrast, introducing the industry factor reduces the estimated magnitudes of local dependence for companies

in the consumer industry, the health industry, and the manufacturing industry by a much larger margin. For

example, the mean group estimate of ψg for the manufacturing industry is as large as 0.59 (0.04) before the

introduction of the industry factor, and it drops to 0.41 (0.04) if we include the industry factor.

In Appendix D (see Table 24 and Table 25), we also report the estimation results when the spatial factor

models are augmented with weakly exogenous spatial-temporal terms (Equation 13). For simplicity, we pre-

specify L = 5 to control within week dynamics. We find that dynamic spatial dependence terms are also

statistically significant, although much smaller in economic magnitude. For example, for the first lag ψ1, even

with a conservative multiple testing adjustment, there are around 20% of ψ1,i are individually significant under

all cases.14 This is consistent with the finding of Scherbina and Schlusche (2015) that a trading strategy based

on this lead-lag relationship may not be profitable in reality.

Next, we examine how the spatial factor model captures the remaining dependence in the de-factored returns.

Using the method described in Section 4.2, we compute the number of non-zero pair-wise cross-correlations of

the residuals from (1) factor model with FF5+MOM+MA that use Fama-French five factors, Momentum factor,

and Media-Attention factor; (2) spatial factor model with FF5+MOM+MA that uses Fama-French five factors,

Momentum factor, and Media-Attention factor.15

To test H0,ij : ρij = 0 for ntest = n(n− 1)/2 pairs of (i, j), for a given family-wise error rate (FWER) p, the

critical values are ± 1√
T
Φ−1(1 − p/2ntest) for the factor model, and F−1(p/2ntest) and F−1(1 − p/2ntest) for

the spatial factor model. F is the empirical null distribution from B = 1000 bootstrap samples. Figure 1 shows

the histogram of bootstrapped ρ̂bij for all i < j, b = 1, . . . , 1000 for the spatial factor model. Table 9 presents

the degree of cross-sectional dependence in the factor model and its spatial-augmented version under different

family-wise error rates. The table shows that adding the spatial component reduces the number of non-zero

pair-wise cross-correlations by a huge margin.16 The spatial component constructed with news-implied linkages

is successful at eliminating the remaining correlations from the de-factored returns.

14There are more than 40% of ψ1,i are individually significant if we apply a less conservative B-H procedure.
15Here, we only present the results for the models with most factors (tradable factors only, as we have seen that macro factors do

not have much explanatory power for daily returns) that are supposed to have the least residual correlations among all competing

models. We can do more sets factor models and their spatial-augmented versions at the cost of bootstrap inference for each spatial

factor model.
16This is not only because we have larger critical values (in absolute values) under the spatial factor specification. Even if

we do not consider the distortion in the limiting distribution of ρ̂ij brought by the spatial component and still use the limiting

distribution for factor model residual correlation coefficients (Equation 14), the percentage of non-zero pair-wise cross correlations

is still reduced by half.
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Critical values # Non-zero pair-wise cross correlations Density

(1) p = 0.05

Factor Model with FF5+MOM+MA -0.091,0.091 9024 11.66%

Spatial Factor Model with FF5+MOM+MA -0.252,0.266 494 0.64%

(2) p = 0.1

Factor Model with FF5+MOM+MA -0.088,0.088 9582 12.38%

Spatial Factor Model with FF5+MOM+MA -0.238,0.238 632 0.82%

Table 9: Degree of cross-sectional dependence in the residuals. Note: Density gives the percentage of non-zero

pair-wise cross correlations (i.e., density=number of non-zero pair-wise cross-correlations/ntest).

6.1.2 APT Test and the Degree of Mispricing

In this section, following Kou et al. (2018), we use the procedures established in Section 4.3 to test the impli-

cations of no asymptotic arbitrage for the following factor models and their spatial-augmented versions (Model

1-6 from Equation 29 to Equation 33 and Equation 34).

• Model 1.1: CAPM model (CAPM)

• Model 1.2: Spatial CAPM model (CAPM(S))

• Model 2.1: Factor model with Fama-French three factors (FF3)

• Model 2.2: Spatial factor model with Fama-French three factors (FF3(S))

• Model 3.1: Factor model with Fama-French five factors (FF5)

• Model 3.2: Spatial factor model with Fama-French five factors (FF5(S))

• Model 4.1: Factor model with Fama-French five factors, and momentum factor (FF5+MOM)

• Model 4.2: Spatial factor model with Fama-French five factors, and momentum factor (FF5+MOM(S))

• Model 5.1: Factor model with Fama-French five factors, momentum factor, and media attention factors

(FF5+MOM+MA)

• Model 5.2: Spatial factor model with Fama-French five factors, momentum factor, and media attention

factors (FF5+MOM+MA(S))

• Model 6.1: Factor model with all tradable factors and macro factors (Ftraded + Fmacro)

• Model 6.2: Spatial Factor model with all tradable factors and macro factors (Ftraded + Fmacro(S))

Table 10 shows the standardised Wald (SW) statistics and the p−values of the tests. All factor models are

rejected. On the other hand, all spatial factor models, except the one with only market factor (Model 1.2),

cannot be rejected at 5% significance level.
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SW p−value

Panel A: Factor Models

Model 1.1: CAPM 3.2816 0.0005

Model 2.1: FF3 3.2537 0.0006

Model 3.1: FF5 3.0766 0.0010

Model 4.1: FF5+MOM 3.2566 0.0006

Model 5.1: FF5+MOM+MA 3.8500 0.0000

Model 6.1: Ftraded + Fmacro 2.2918 0.0109

Panel B: Spatial Factor Models

Model 1.2: CAPM(S) 1.688 0.0457

Model 2.2: FF3(S) -0.42689 0.6653

Model 3.2: FF5(S) -0.1725 0.5685

Model 4.2: FF5+MOM(S) -0.3999 0.6554

Model 5.2: FF5+MOM+MA(S) 0.3944 0.3466

Model 6.2: Ftraded + Fmacro(S) -0.8251 0.7954

Table 10: Testing the implications of no asymptotic arbitrage for different factor models and their spatial-

augmented versions. SW column gives the standardised wald statistics, and p−value column gives the associated

p−values of the tests.

As a complement to the joint test, for models with only tradable factors, we also employ the following

statistics to evaluate the performance of different models.

1. The percentage of individually significant alphas. Corollary 2 suggests that the number of large deviations

from the null for individual alphas is important. Early literature such as Jensen (1968) and Jensen et al.

(1972) also look at n individual tests. As elaborated in Section 6.1.1, we apply the False Discovery

Rate(FDR) approach from Barras et al. (2010) to deal with the multiple testing issue.

2. Average L1 norm of intercepts A(| αi |).

3. Average L2 norm of intercepts A(α2
i ) (Fama and French (2015)).

Those three statistics are implied by theorem 1 and the corollaries to be useful in measuring how good the

approximations are. In addition to those three measures of mispricing, we also report the average adjusted

R2 of different models as a measure of goodness of fit. The adjusted R2 of the ith asset is defined as R2
i =

1− T−1
T−K−1

V ar(ϵi)
V ar(ri)

, where K is the number of coefficients in the equation, excluding the constant.

27

Electronic copy available at: https://ssrn.com/abstract=3827902



% of significant αi A(| αi |) A(α2
i ) Adjusted R2

Model 1.1: CAPM 5.37% 2.51 10.91 0.4059

Model 1.2: CAPM(S) 3.06% 2.43 10.41 0.4655

Model 2.1: FF3 4.89% 2.49 10.66 0.4294

Model 2.2: FF3(S) 1.74% 2.31 9.39 0.4823

Model 3.1: FF5 4.15% 2.45 11.17 0.4397

Model 3.2: FF5(S) 1.99% 2.21 9.39 0.4920

Model 4.1: FF5+MOM 4.17% 2.49 11.18 0.4428

Model 4.2: FF5+MOM(S) 1.45% 2.11 8.44 0.4920

Model 5.1: FF5+MOM+MA 5.02% 2.49 11.18 0.4472

Model 5.2: FF5+MOM+MA(S) 2.48% 2.16 8.56 0.4956

Table 11: Summary of model performance for factor models and spatial factor models. Note: Each panel shows

the performance statistics of a factor model, and its spatial-augmented version, when all factors are tradable

portfolios . Note: α used to compute A(| αi |) and A(α2
i ) are in basis point. For each column, the best statistic

is highlighted in red.

Table 11 shows that for all factor models, adding spatial interactions leads to noticeable improvements in

reducing mispricing errors and boosting model fittings. In a case where models include macro factors, our null

is no longer H0 : α = 0, so the three mispricing measures discussed earlier are no longer valid.17 Two versions

of Model 6 that contain both tradable and non-tradable factors do not improve the model fitting (measured by

the average adjusted R2) further. And the proportions of individual deviations from null are both around 4%,

which are also higher than other spatial factor models with tradable factors only. This is due to the fact that

macro factors do not play an important role in explaining daily returns. And among all the competing models

that we have considered, Model 4.2 performs the best in terms of the minimizing mispricing errors.

6.1.3 Alternative Networks

In this section, we gauge whether the news-implied links carry additional information on top of existing linkage

datasets. We ask two questions. Firstly, does the spatial factor model with news-implied W outperform the

models with W constructed using other existing linkage datasets? Secondly, conditional on other existing

linkages, do local risk spillovers via our news-implied links continue to be significant? We consider the following

competing networks:

• Industry-based adjacency matrices (based on Fama-French 12 Industry). This is motivated by Moskowitz

and Grinblatt (1999), Engelberg et al. (2018) and Fan et al. (2016). The adjacency matrix is a block-

diagonal matrix where companies within the same industry are fully connected.

• IBES analyst co-coverage networks. It has been documented that shared analyst coverage is a strong

proxy for fundamental linkages between firms and reflects firm similarities along many dimensions (Ali

and Hirshleifer (2020), Israelsen (2016), Kaustia and Rantala (2013)). We use the Institutional Brokers

17Similar to looking at individual t tests on alphas, in the case with macro factors, we could look at n individual tests H0 : gi = 0

for i = 1, . . . , n, where gi is the ith element of g(θs) from Equation 21.
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Estimate System (IBES) detail history files to construct the analyst co-coverage-based adjacency matrix.

For each year in the sample, we consider a stock is covered by an analyst if the analyst issues at least one

FY1 or FY2 earnings forecast for the stock during the year. And we consider two stocks as linked if there

are common analysts during the year, weighted by the number of common analysts. We then add up the

yearly adjacency matrices to get the full sample adjacency matrix.

• Customer-supplier links (Cohen and Frazzini (2008)) from Andrea Frazzini’s data library. The strength

of links is weighted by sales.

• Geographic links (Pirinsky and Wang (2006) and Parsons et al. (2020)). We obtain location information

from CRSP Compustat merged files. We then merge the sample firms with the Metropolitan Statistical

Areas (MSA) data using the ZIP-FIPS-MSA data from the US Department of Labor, which maps zip

codes to MSAs. We follow Pirinsky and Wang (2006), and consider firms whose headquarters are in the

same MSA as linked.

• Partial correlation network (Barigozzi and Hallin (2017)).18 To construct the adjacency matrix, we use

elastic net and BIC information criterion to estimate the following linear regressions

vit =

n∑
j ̸=i

βijvjt + eit for i = 1, . . . , n,

where vit is the factor model (FF5+MOM) residual for stock i at t. For the adjacency matrix before

normalizing, we let wij = 1 if βij ̸= 0.

% of significant αi A(| αi |) A(α2
i ) Adjusted R2

WIndustry 3.73% 2.12 8.91 0.4967

WIBES 3.25% 2.25 9.45 0.4933

WCustomer−Supplier 4.15% 2.51 10.87 0.4450

WGeographic 3.12% 2.46 10.64 0.4591

WPartial 1.63% 2.01 8.04 0.5213

WNews 1.45% 2.11 8.40 0.4920

Table 12: Summary of model performance using competing networks. Note: This table shows the performance of

the competing adjacency matrices under the spatial factor model with Fama-French five factors, and Momentum

factor (the best model according to Table 11). α used to compute A(| αi |) and A(α2
i ) are in basis point. For

each column, the best statistic is highlighted in red.

Table 12 shows the performance of the competing networks. Among adjacency matrices constructed using non-

return data, the spatial factor model estimated with new-implied linkages outperforms other networks in terms

of minimizing pricing errors. The partial correlation network constructed using penalising method is purely

data-driven, and it very much reflects the true connectivity structure among the de-factored returns in the

sample. It is not surprising that the partial correlation network performs the best among most of the criteria

that we use.19 The fact that our news-implied network performs reasonably close to the partial correlation

18We thank an anonymous referee for pointing out that we could compare our results withW estimated using penalising methods.
19It should be pointed out that despite the good in-sample performance, a spatial factor model with WPartial is not theoretically

justified given that WPartial is estimated with return data.
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network shows that it is a very nice proxy of firm-to-firm connectivity. And the advantage of WNews is that it

is interpretable while WPartial is purely data-driven.

Next, we examine whether our news-implied linkages carry additional information on top of existing linkages

documented? To do that, we estimate the two-W spatial factor models below, with W1 being our news-implied

networks and W2 being a set of other candidate matrices. For simplicity, we only demonstrate the case where

all factors are tradable.

rt = α+Bzt +Ψ1W1rt +Ψ2W2rt + ϵt. (36)

Table 13 shows the estimation results for Equation 36. Although the magnitude of local dependence among

news-implied peers is weakened by the introduction of other networks, our new-implied links are still important

channels of risk spillovers. The mean group estimates of ψ1 are around 0.29 − 0.49. Given a conservative

Bonferroni correction, there are still more than 50% of parameters being individually significant across different

specifications. The results confirm that the novel dataset carries additional information on top of existing

networks. The statistically and economically significant local dependence among the news-implied peers cannot

be explained by other existing networks.

(1) Factor Component (2) Spatial Component

α β1 β2 β3 β4 β5 β6 ψ1 ψ2

Panel(1): W1 = Wnews and W2 = WIndustry

Mean Group Estimates 0.007 0.291 0.097 -0.119 0.081 0.147 -0.011 0.347 0.385

( 0.001) ( 0.024) ( 0.013) ( 0.018) ( 0.018) ( 0.017) ( 0.007) ( 0.018) ( 0.020)

% significant (at 5% level) 1.1% 60.2% 39.1% 40.6% 31.5% 36.8% 20.6% 61.0% 71.1%

Np 394 394 394 394 394 394 394 387 394

Panel(2): W1 = Wnews and W2 = WIBES

Mean Group Estimates 0.012 0.486 0.126 -0.115 0.093 0.165 -0.025 0.368 0.197

( 0.001) ( 0.022) ( 0.013) ( 0.018) ( 0.019) ( 0.019) ( 0.007) ( 0.019) ( 0.014)

% significant (at 5% level) 1.3% 72.3% 46.2% 51.5% 40.4% 38.6% 26.1% 67.4% 61.8%

Np 394 394 394 394 394 394 394 387 340

Panel(3): W1 = Wnews and W2 = WCustomer−Supplier

Mean Group Estimates 0.012 0.538 0.144 -0.145 0.132 0.178 -0.018 0.485 0.082

( 0.001) ( 0.022) ( 0.014) ( 0.021) ( 0.021) ( 0.021) ( 0.007) ( 0.019) ( 0.020)

% significant (at 5% level) 1.4% 74.6% 50.5% 61.4% 49.0% 46.4% 30.2% 77.3% 44.1%

Np 394 394 394 394 394 394 394 387 59

Panel(4): W1 = Wnews and W2 = WGeographic

Mean Group Estimates 0.011 0.491 0.135 -0.141 0.124 0.192 -0.019 0.462 0.093

( 0.001) ( 0.025) ( 0.014) ( 0.020) ( 0.020) ( 0.020) ( 0.007) ( 0.018) ( 0.019)

% significant (at 5% level) 1.4% 65.7% 48.0% 59.4% 45.7% 45.4% 27.7% 74.7% 32.6%

Np 394 394 394 394 394 394 394 387 307

Panel(5): W1 = Wnews and W2 = WPartial

Mean Group Estimates 0.008 0.286 0.073 -0.121 0.065 0.138 -0.004 0.292 0.421

( 0.001) ( 0.025) ( 0.012) ( 0.018) ( 0.016) ( 0.017) ( 0.006) ( 0.015) ( 0.021)

% significant (at 5% level) 0.9% 61.4% 34.8% 45.9% 30.7% 33.5% 22.6% 53.7% 83.5%

Np 394 394 394 394 394 394 394 387 394

Table 13: QML estimation results of two-W spatial factor model with Fama-French five factors,

and Momentum Factor (Equation 36).

7 Conclusion

We characterize how both strong and weak/local dependencies affect asset returns using a flexible heterogeneous

coefficient spatial factor model. Theoretically, we derive the testable implications of no asymptotic arbitrage for
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such a model, and we also provide the associated Wald tests. Empirically, we focus on the weak/local dependency

in equity returns, which is an area less explored in empirical financial studies due to data availability issues.

Utilizing the novel business news-implied linkage data, we construct the channels through which the local shocks

transmit. We find that stocks linked via business news co-mentioning exhibit excess co-movement beyond that

can be explained by standard asset pricing models like CAPM and APT. Exposures to common risk factors

and local interactions are two distinct mechanisms that jointly explain the comovement in asset returns. It is

important for investors and policymakers to separately analyze the two types of dependencies to fully understand

what type of risk they are exposed to.
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Appendices

A APT Theory

A.1 Proof of Theorem 1

Under Assumption Equation 2.3, (I −ΨW ) is invertible, and we denote the inverse as G(ψ) = (I −ΨW )−1.

We rewrite the spatial factor model as

r = Gα+GBf +Gϵ.

We let

α∗ = Gα, B∗ = GB, ϵ∗ = Gϵ.

The spatial factor model can be written as a reduced-form factor model

r = α∗ +B∗f + ϵ∗. (37)

In particular, the covariance matrix of the reduced form error is

Ω∗ = E(ϵ∗ϵ∗⊺) = GΩG⊺.

We follow Ingersoll Jr (1984), and factor the positive definite covariance matrix Ω∗ as Ω∗ = CC⊺, where C is

a nonsingular matrix. Now consider a subsequences of assets. For the nth economy, consider the orthogonal
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projection of the vector (Cn)−1α∗n into the space spanned by (Cn)−11n and the columns of (Cn)−1B∗n as

follows:

(Cn)−1α∗n = (Cn)−11nλn0 + (Cn)−1B∗nλn + un.

By the nature of orthogonal projection,

0 = (B∗n)⊺((Cn)⊺)−1un = (1n)⊺((Cn)⊺)−1un.

Define pricing error as vn = αn − (Gn)−11nλn0 −Bnλn, the reduced form pricing error from the reduced form

factor model Equation 37 is v∗n = Gvn

v∗n = α∗n − 1nλ
n
0 −B∗nλn = Gn(αn − (Gn)−11nλn0 −Bnλn) = Gnvn.

Given that, the reduced form pricing error v∗n can be written as v∗n = Cnun. Using the orthogonal conditions

and the factorization Ω∗n = Cn(Cn)⊺, we have:

(B∗n)⊺(Ω∗n)−1v∗n = (1n)⊺(Ω∗n)−1v∗n = 0.

Consider a zero cost portfolio cn = (Ω∗n)−1v∗n[(v∗n)⊺(Ω∗n)−1v∗n]−1

(1n)⊺cn = (1n)⊺(Ω∗n)−1v∗n[(v∗n)⊺(Ω∗n)−1v∗n]−1 = 0,

with expected return

E((cn)⊺rn) = (cn)⊺α∗n = [(v∗n)⊺(Ω∗n)−1v∗n]−1(v∗n)⊺(Ω∗n)−1(1nλn0 +B∗nλn + v∗n) = 1,

and variance

V ar((cn)⊺rn) = (cn)⊺V ar(rn)cn

= [(v∗n)⊺(Ω∗n)−1v∗n]−1(v∗n)⊺(Ω∗n)−1(B∗n(B∗n)⊺ +Ω∗n)(Ω∗n)−1v∗n[(v∗n)⊺(Ω∗n)−1v∗n]−1

= [(v∗n)⊺(Ω∗n)−1v∗n]−1 = [(Gnvn)⊺(GnΩn(Gn)⊺)−1Gnvn]−1

= [(vn)⊺(Ωn)−1(vn)]−1.

If the weighted sum of squared pricing errors (vn)⊺(Ωn)−1(vn) is not uniformly bounded, then the variance of

this portfolio would go to zero along some subsequence, and the asymptotic arbitrage opportunity described in

Section 3 exists.

We have established that no asymptotic arbitrage requires that

(vn)⊺(Ωn)−1(vn) ≤ V1 <∞ for all n.

Under Assumption A1, we have

(vn)⊺(vn) ≤ σ̄2(vn)⊺(Ωn)−1(vn) ≤ σ̄2V1 = V <∞ for all n.

So we have the sum of squared pricing errors being uniformly bounded. Q.E.D.
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A.2 Proof of Corollary 1.1

When there is a risk-free asset with rate rf , we can write Equation 3 as:

r − rf1 = α− rf1+ rfΨW1+Bf +ΨW (r − rf1) + ϵ,

which is equivalent to

r̃ = α̃+Bf +ΨW r̃ + ϵ, (38)

where α̃ = α− (I −ΨW )1rf . We let

α̃∗ = Gα̃, B∗ = GB, ϵ∗ = Gϵ.

The spatial factor model can be written as a reduced-form factor model

r̃ = α̃∗ +B∗f + ϵ∗. (39)

We follow Ingersoll Jr (1984), and factor the positive definite covariance matrix Ω∗ as Ω∗ = CC⊺, where C is

a nonsingular matrix. Now consider a subsequences of assets. For the nth economy, consider the orthogonal

projection of the vector (Cn)−1α̃∗n into the space spanned by the columns of (Cn)−1B∗n as follows:

(Cn)−1α̃∗n = (Cn)−1B∗nλn + un.

By the nature of orthogonal projection,

(B∗n)⊺((Cn)⊺)−1un = 0.

Define the pricing errors as:

v∗n = α̃∗n −B∗nλn = Cnun = Gnvn.

Consider a zero cost portfolio with no factor risk cn = (Ω∗n)−1v∗n[(v∗n)⊺(Ω∗n)−1v∗n]−1, which has expected

return

E((cn)⊺r̃n) = (cn)⊺α̃∗n = [(v∗n)⊺(Ω∗n)−1v∗n]−1(v∗n)⊺(Ω∗n)−1(B∗nλn + v∗n) = 1,

and variance

V ar((cn)⊺r̃n) = (cn)⊺V ar(r̃n)cn

= [(v∗n)⊺(Ω∗n)−1v∗n]−1(v∗n)⊺(Ω∗n)−1(B∗n(B∗n)⊺ +Ω∗n)(Ω∗n)−1v∗n[(v∗n)⊺(Ω∗n)−1v∗n]−1

= [(v∗n)⊺(Ω∗n)−1v∗n]−1 = [(Gnvn)⊺(GnΩn(Gn)⊺)−1Gnvn]−1

= [(vn)⊺(Ωn)−1(vn)]−1.

So we establish that

α̃n ≈ Bnλn. (40)

If the weighted sum of squared pricing errors (vn)⊺(Ωn)−1(vn) is not uniformly bounded, then the variance of

this portfolio would go to zero along some subsequence, and the asymptotic arbitrage opportunity described in

Section 3 exists. As in theorem 1, Equation 40 also implies a unweighted pricing error bound.

37

Electronic copy available at: https://ssrn.com/abstract=3827902



From theorem 5 of Ingersoll Jr (1984), when the factor loading matrix B is a complete factor represen-

tation, the kth factor premium can be uniquely identified as the excess expected return on a well diversified

portfolio with a loading of one on the kth risk factor, and a zero loading on all the rest. That is to say,

λ = E(f̃)−1rf when all factors are traded portfolios, where 1is a vector of ones that is conformable. Following

their definition below:

Definition 1. A factor economy representation is diagonal if the correlation matrix of residuals has

uniformly bounded spectral norm for all n. And a factor economy has bounded residual variation if the

covariance matrix of residuals has uniformly bounded spectral norm for all n.

Lemma 1. The reduced form factor model (Equation 39) implied by the spatial factor model (Equation 3)

has bounded residual variation, and is diagonal under Assumptions A1-A4.

Proof: for the reduced form factor model Equation 39, the sequence of reduced form error covariance matrix

{Ω∗n} has uniformly bounded eigenvalues under Assumptions A1-A4 given that:

∥Ω∗∥ = ∥GΩG⊺∥ ≤ σ̄2 ∥G∥ ∥G⊺∥ ≤ σ̄2 ∥G∥2∞ ≤ σ̄2c2 <∞ for all n.

And under the Assumption A1 that residual variances are uniformly bounded away from zero, this factor

economy is also diagonal given that:

∥R∗∥ =
∥∥∥D−1/2

Ω∗ Ω∗D
−1/2
Ω∗

∥∥∥ ≤ 1

σ
¯

2
∥Ω∗∥ ≤ σ̄2

σ
¯

2
c2 <∞ for all n.

Q.E.D.

Definition 2. A factor loading matrix B is a complete factor representation if it is regular, namely

lim
n→∞

∥∥(B⊺
nBn)

−1
∥∥ = 0,

and has uniformly bounded residual variation.

Lemma 2. The reduced form factor model (Equation 39) implied by the spatial factor model (Equation 3)

is a complete factor representation under Assumptions A1-A4.

Lemma 1 has established that the reduced form factor model (Equation 39) has bounded residual variation

under Assumptions A1-A4. In addition, Assumption A2 guarantees that the factor representation is regular.

Together, the complete factor representation condition is satisfied under our Assumptions A1-A4.

Re-write Equation 38 as:

r̃ = α̌+Bz̃+ΨW r̃ + ϵ,

where α̌ = α̃+B1rf −BE(f̃) = α− (I −ΨW )1rf +B1rf −BE(f̃), for 1 being the n× 1 unit vector and 1

being a vector of ones that is conformable. Given Lemma 2, λ = E(f̃)−1rf when factors are traded portfolios.

Combining the results from Equation 40, we have the below results:

α̌n = α̃n +Bn1rf −BnE(f̃) ≈ Bnλn +Bn1rf −BnE(f̃) = 0.

Q.E.D.
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A.3 Proof of Corollary 1.2

This proof is heavily borrowed from Kou et al. (2018). We first rewrite the spatial-factor model with the

dependent variable being the excess returns (Equation 6) as

(I −ΨW )r̃ = G−1r̃ = α̌+Bz̃+ ϵ.

Suppose the asset returns from an infinite economy are generated by:

(Gn)−1r̃n = α̌n +Bnz̃+ ϵn.

For any fixed δ > 0, assume I(| α̌nj |> δ) = 1 for j = 1, . . . , N(n, δ). For each of those N(n, δ) elements, we can

construct a zero cost portfolio as following way.

Take the jth element for example. Denote the jth column of Identify matrix In by ej . If α̌
n
j > δ, consider a

zero-cost portfolio which takes a long position e⊺j (G
n)−1 in excess returns r̃n, and short position e⊺jB

n in the

zero-cost traded factors z̃. If α̌nj < −δ, consider a zero-cost portfolio which takes a short position e⊺j (G
n)−1

in excess returns r̃n, and long position e⊺jB
n in the zero-cost traded factors z̃. The portfolio is a zero-cost

one because the long and short position are both zero-cost. The portfolio has expected return | α̌nj |> δ, and

variance σ2
j < σ̄2.

We can construct N(n, δ) such portfolios. Consider a new portfolio that takes equal weight in these N(n, δ)

portfolios. This new portfolio is zero-cost, with expected return
∑N(n,δ)
j=1 |α̌nj |
N(n,δ) > δ > 0. Under Assumption A1

that errors are uncorrelated, the variance of this portfolio is smaller than σ̄2

N(n,δ) . If Equation 8 fails, and N(n, δ)

is diverging, then we have asymptotic arbitrage. Q.E.D.

A.4 Proof of Corollary 1.3

When there is risk free asset with rate rf , we establish earlier that we have:

r̃ = α̃+Bf +ΨW r̃ + ϵ,

where α̃ = α− (I −ΨW )1rf . And no asymptotic arbitrage implies that α̃n ≈ Bnλn.

Re-arrange the above spatial factor model Equation 3 in another way to have

r̃ = α
¯
+B1z̃1 +B2f2 +ΨW r̃ + ϵ,

where α
¯
= α − (I −ΨW )1rf + B11rf − B1E(f̃1), for 1 being the n × 1 unit vector and 1 being a vector of

ones that is conformable. Comparing α
¯
with α̃ from Equation 38, we have

α
¯
= α̃+B11rf −B1E(f̃1). (41)

Same as corollary 1, when the first k1 factors f1 are traded, and under Assumptions A1-A4, λ1 = E(f̃1)− 1rf .

together with Equation 41 and α̃n ≈ Bnλn, they imply that:

α
¯

n ≈ Bnλn +Bn
11rf −Bn

1E(f̃1). (42)
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The right hand side of Equation 42 without the superscript n can be written as:

Bλ+B11rf −B1E(f̃1) = B1λ1 +B2λ2 +B11rf −B1E(f̃1)

= B1(E(f̃1)− 1rf ) +B2λ2 +B11rf −B1E(f̃1)

= B2λ2.

Combining that with Equation 42, we can get

α
¯

n ≈ Bn
2λ

n
2 .

Q.E.D.

B Identification and Inference of the Heterogeneous Spatial-Temporal

Model

Aquaro et al. (2020) studies the conditions under which θfull,0 is identified, and establishes consistency and

asymptotic normality of the estimator. Focusing on the baseline model (Equation 11), write the (n(K + 3)) by

1 vector θfull = (ψ⊺,α⊺,β⊺
1 , . . . ,β

⊺
K ,σ

2⊺)⊺ = (ψ⊺, b⊺,σ2⊺)⊺, where b = (α⊺,β⊺
1 , . . . ,β

⊺
K)⊺ collects all the pa-

rameters associated with exogenous variables. To establish the identification and asymptotic result, in addition

to Assumption A3 from Section 2.3, the following assumptions are made:

Assumption 5. The error terms {ϵit, i = 1, . . . , n; t = 1, . . . , T} are independently distributed over i and t.

For filtration Ft = (xt,xt−1,xt−2, ...), E(ϵit | Ft) = 0, E(ϵ2it | Ft) = σ2
i0, for i = 1, . . . , n, so there is no condi-

tional heteroskedasticity. infiσ
2
i0 > c > 0 and supiσ

2
i0 < σ̄2 < ∞, and E(| ϵit |p| Ft) = E((| ϵit |p) = ω̄ip < c̄,

for all i and t, where 1 ≤ p ≤ 4 + ε, for some ε > 0.

Assumption 6. (a) xt are stationary processes, that satisfy the moment condition supi,t,lE(| xit,l |2+g) < c̄,

for some g > 0, i = 1, . . . , n, t = 1, . . . , T, l = 1, . . . , (K + 1). (b) E(xtx
′
t) = Σxx, where entry Σij = E(xitx

′
jt)

exists for all i and j, such as supi,j∥Σij∥ < c̄, and Σii is a k×k non-singular matrix with infi[λmin(Σii)] > c > 0,

and supi[λmin(Σii)] < c̄ <∞. (c) 1
T

∑T
t=1 xtx

′
t
a.s−−→ Σxx as T → ∞.

To investigate identification, one needs to introduce the following definition

Definition 3. The set Nc(σ
2
0) in the closed neighbourhood of σ2

0 if:

Nc(σ
2
0) = {σ2

0 ∈ Θσ, | σ2
i0/σ

2
i − 1 |< ci, for i = 1, . . . , n},

for some ci > 0, where Θσ is a compact subset of Rn.

Assumption 7. The (n(K +3)) by 1 vector θfull = (ψ′, b′,σ2′)′ belongs to Θc = Θψ ×Θb×Nc(σ
2
0). Θψ

and Θb are compact subsets of Rn and Rn(K+1), respectively, and Nc(σ
2
0) is defined in Definition 3. Θc is a

subset of the (n(K + 3)) dimensional Euclidean space, Rn(K+3), and θfull,0 is an interior point of Θc.
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The identification results are given by the following proposition:

Proposition 3. Suppose that Assumption A3, A5-A7 hold, consider a heterogeneous coefficient spatial

model given by Equation 11 and log-likelihood function given by Equation 12. For fixed n and K, the (n(K+3))

dimensional true parameter vector θfull,0 is almost surely locally identified on Θc.

The main inference results are given by the following proposition:

Proposition 4. Suppose that Assumption A3, A5-A7 hold, consider a heterogeneous coefficient spatial

model given by Equation 11 and log-likelihood function given by Equation 12. For fixed n and K, the (n(K+3))

dimensional QML estimator of θfull,0 is denoted as θ̂full,QMLE , which is almost surely locally consistent for

θfull,0 on Θc, and has the following asymptotic distribution:

√
T (θ̂full,QMLE − θfull,0) =⇒ N (0,V θfull), (43)

where V θfull is the asymptotic covariance matrix, which has a standard sandwich form:

V θfull =H
−1(θfull,0)J(θfull,0, γ)H

−1(θfull,0), (44)

where H(θfull,0) = limT→∞E0(− 1
T
∂2ℓT (θfull)
∂θfull∂θ′

full
) is the Hessian, and J(θfull,0, γ) is the asymptotic variance

of the score, which depends on the distribution of the errors. In the case of Gaussian errors, γ = 2, and

H(θfull,0) = J(θfull,0, 2).

C Tests of Asset Pricing Restrictions

C.1 Derivation of the Jacobian

This subsection show the details of deriving the Jacobian J and LB , which is the derivative of matrix function

F (B) =MB = I −B(B′B)−1B′.

For simplicity and exposition, for the following proof, drop all notations (∗ and non-traded factor loadings

subscript) in the reduced form model. To be specific, we replace θs,B
∗
2, and α

∗ from the main text with θ,B,

and α, respectively. Then the testing problem from the main text (Equation 21) can be written as:

g(θ) = 0, θ = (α′, vec(B)′)′,

g(θ) =MBα,MB = I −B(B′B)−1B′.

Our goal is to derive the Jacobian matrix

J(θ) =
∂g(θ)

∂θ′
.

Having partitioned the vector θ′ = (α′, vec(B)′), the Jacobian can be partitioned in the same way, and we write

J(θ) = (Jα, Jvec(B)),

where Jα contains partial derivative with respect to α, and Jvec(B) contains the partial derivative with respect

to vec(B). It can be easily seen that Jα =MB, and our main task is to derive Jvec(B). By the chain rule,

Jvec(B) =
∂g

∂vec(MB)′
∂vec(MB)

∂vec(B)′
.
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To obtain ∂g
∂vec(MB)′ , holding α as fixed,

dg = (dMB)α = (α′ ⊗ In)d(vec(MB)),

and thus ∂g
∂vec(MB)′ = α

′⊗In. Denote ∂vec(MB)
∂vec(B)′ as LB . From Magnus and Neudecker (2019), LB is the derivative

of matrix function F (B) = I −B(B′B)−1B′, and we have

d(vec(MB)) = LBd(vec(B)).

Given F (B),

dF (B) = −d(B(B′B)−1B′)

= −(dB)[(B′B)−1B′]−Bd[(B′B)−1B′]

= −(dB)[(B′B)−1B′]−B[(d(B′B)−1)B′ + (B′B)−1dB′]

= −(dB)[(B′B)−1B′]−B[−(B′B)−1[(dB)′B+B′dB](B′B)−1]B′ −B(B′B)−1(dB)′.

Denote d(vec(B)) = vec(dB) = δB ,

d(vec(MB)) = d(vec(F )) = vec(dF )

= −(B(B′B)−1 ⊗ In)δB − (In ⊗B(B′B)−1)Kn,k2δB

+ [B(B′B)−1B′ ⊗B(B′B)−1]Kn,k2δB + [B(B′B)−1 ⊗B(B′B)−1B′]δB

= LBδB ,

where

LB = −(B(B′B)−1 ⊗ In)− (In ⊗B(B′B)−1)Kn,k2

+ [B(B′B)−1B′ ⊗B(B′B)−1]Kn,k2 + [B(B′B)−1 ⊗B(B′B)−1B′]

= −(In2 +Kn2)((B(B′B)−1 ⊗ In)− (B(B′B)−1 ⊗B(B′B)−1B′))

= −(In2 +Kn2)(B(B′B)−1 ⊗ (In −B(B′B)−1B′))

= −(In2 +Kn2)(B(B′B)−1 ⊗MB).

And by the property of commutator matrix,

LB = −(In2 +Kn2)(B(B′B)−1 ⊗MB)

= −(B(B′B)−1 ⊗MB)− (MB ⊗B(B′B)−1)Kn,k2,

which is computationally attractive when n is large.

C.2 Alternative Method of Deriving the Generalized Inverse of Ωg

To implement the Wald statistic one needs to find a suitable generalized inverse of the singular n×n covariance

matrix Ωg = J(θs)VθsJ(θs)
⊺
, where J(θs) = ∂g(θs)/∂θ

⊺

s is the n × n(k2 + 1) Jacobian matrix, as outlined in

Andrews (1987). We present one approach to that in the main text, and we present an alternative approach

here. This second approach is based on the singular value decomposition of J, namely suppose that

J⊺ = U∗DU
⊺ = (U∗1, U∗2)

 Dn−k2 0

0 0

 U⊺
1

U⊺
2

 .
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Then

JVθsJ
⊺ = (U1, U2)

 Dn−k2 0

0 0

 U⊺
∗1

U⊺
∗2

Vθs (U∗1, U∗2)

 Dn−k2 0

0 0

 U⊺
1

U⊺
2


= (U1, U2)

 Dn−k2 0

0 0

 U⊺
∗1VθsU∗1 U⊺

∗1VθsU∗2

U⊺
∗2VθsU∗1 U⊺

∗2VθsU∗2

 Dn−k2 0

0 0

 U⊺
1

U⊺
2


= (U1, U2)

 Dn−k2U
⊺
∗1VθsU∗1Dn−k2 0

0 0

 U⊺
1

U⊺
2

 .

Therefore

(JVθsJ
⊺)

+
= U1D

−1
n−k2 (U

⊺
∗1VθsU∗1)

−1
D−1
n−k2U

⊺
1 .

Since (U⊺
∗ VθsU∗)

−1
= U⊺

∗ V
−1
θs
U∗, the main issue is to express (U⊺

∗1VθsU∗1)
−1

in terms of U⊺
∗1VθsU∗1 U⊺

∗1VθsU∗2

U⊺
∗2VθsU∗1 U⊺

∗2VθsU∗2

−1

= U⊺
∗ V

−1
θs
U∗.

In addition, we have

V̂ −1
θ∗ =

(
X⊺X

T

)
⊗ Σ̂−1

ϵ∗ , Σ̂−1
ϵ∗ = (In − Ψ̂W )

⊺
D−1
σ̂ (In−Ψ̂W ).

Juárez-Ruiz et al. (2016) propose an algorithm for obtaining the inverse of a submatrix in terms of the

inverse of the matrix. Therefore, it is possible to express (JVθsJ
⊺)

+
in terms of V −1

θs
and the singular value

decomposition of J via a finite sequence of steps.

C.3 Proof of Proposition 1 and Proposition 2

C.3.1 Proposition 1

Define the limits

µz = lim
T→∞

1

T

T∑
t=1

E(zt), Σz = lim
T→∞

1

T

T∑
t=1

E ((zt − µz)(zt − µz)⊺) .

This certainly holds under Assumption A6. We also have, as T → ∞,

√
T (α̂∗ −α∗) =⇒ N (0, (1 + µ⊺

zΣ
−1
z µz)Σϵ∗). (45)

Recall that Σϵ∗ = G(Ψ)DσG(Ψ)⊺, where Ψ = diag(ψ). Here, ψ and σ are parameters from the structural

spatial factor model (Equation 15). Aquaro et al. (2020) established that under Assumptions A3, and A5-A7

from Appendix B, for fixed n and K, the (n(K+3)) dimensional QML estimator of θfull,0, denoted θ̂full,QMLE ,

is almost surely locally consistent for θfull,0 on Θc. In particular, ψ̂ and σ̂ are consistent estimators. It follows

that as T → ∞

Σ̂ϵ∗ = G(Ψ̂)Dσ̂G(Ψ̂)⊺
p→ Σϵ∗ .

Combining the above equation with Equation 45, under the null that α∗ = 0, we have by Slutsky’s theorem

W = T
α̂∗⊺Σ̂−1

ϵ∗ α̂
∗

1 + µ̂⊺
z Σ̂

−1
z µ̂z

= T
α̂∗⊺Σ−1

ϵ∗ α̂
∗

1+µ⊺
zΣ

−1
z µz

+ oP (1) =⇒ χ2(n).

Q.E.D.
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C.3.2 Proposition 2

Equation 22 implies that
√
T (θ̂s − θs) =⇒ N (0, Vθs), (46)

where Vθs is the submatrix of V ∗
θ that corresponds to the θs components. By the delta method,

√
Tg(θ̂s) =⇒ N (0,Ωg) under the null, (47)

where Ωg = J(θs)VθsJ(θs)
⊺ and J(θs) = ∂g(θs)/∂θ

⊺
s is the Jacobian matrix. Given consistent QML estimator

Θ̂∗ = (α̂∗⊺, vec(B̂∗
1)

⊺, vec(B̂∗
2))

⊺) = R⊺X(X⊺X)−1, we have

Ĵ = (MB̂∗
2
,−(α̂∗⊺B̂∗

2(B̂
∗
2
⊺B̂∗

2)
−1 ⊗MB̂∗

2
)) + (MB̂∗

2
,−(α̂∗⊺MB̂∗

2
⊗ B̂∗

2(B̂
∗
2
⊺B̂∗

2)
−1)Kn,k2)

p→ J.

In addition, we have

V̂θ∗ =

(
X⊺X

T

)
⊗ Σ̂ϵ∗

p→ Vθ∗ and thus V̂θs
p→ Vθs .

Combining the above two equations gives

Ω̂g = ĴV̂θs Ĵ
⊺ p→ JVθsJ

⊺ = Ωg.

Given a suitable generalized inverse Ω̂+
g that we have discussed in details in the main body of the paper, and

in particular, with Pr
(
rank(Ω̂g) = rank(Ωg) = n− k2

)
→ 1 as T → ∞, using the result of Andrews (1987)

W = Tg(θ̂s)
⊺Ω̂+

g g(θ̂s) =⇒ χ2(n− k2).

In fact, since Ω̂g
p→ Ωg, the eigenvectors satisfy Q̂

p→ Q and the eigenvalues satisfy λ̂j
p→ λj , where λj > 0 for

j = 1, . . . , n− k2 and λj = 0 for j > n− k2. Therefore, for any ε > 0 we have

lim
T→∞

Pr

(
max

1≤j≤n−k2

∣∣∣λ̃−1
j − λ−1

j

∣∣∣ > ε

)
= 0

and so Q̂Λ̃+Q̂⊺ p→ QΛ+Q⊺, where Λ̃+ = diag(λ̃−1
1 , . . . , λ̃−1

n−k2 , 0, . . . , 0). By construction the matrix Q̂Λ̃Q̂⊺, with

Λ̃ = diag(λ̃1, . . . , λ̃n−k2 , 0, . . . , 0), has rank n− k2. Therefore, the result follows. Q.E.D.

D Supplementary Figures and Tables

Number of unique news stories 88, 316, 898

Number of stories remaining after removing topics including

analyst recommendations, ratings changes, and index movements
87, 841, 641

Of these:

Number of stories tag sample companies 8, 341, 848

Of these:

Number of stories that mention only one company 5, 507, 772 (66.03%)

Number of stories that mention exactly two companies 1, 637, 256 (19.63%)

Number of stories that mention more than two companies 1, 196, 820 (14.34%)

Table 14: Descriptive statistics for RavenPack Equity files Dow Jones Edition for the period January 2004 to

December 2015.
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Number of yearly window a pair gets identified Frequency Percentage Cumulative Percentage

0 217024 72.80% 72.80%

1 40178 13.48% 86.28%

2 13302 4.46% 90.74%

3 7116 2.39% 93.13%

4 4522 1.52% 94.65%

5 3236 1.09% 95.74%

6 2506 0.84% 96.58%

7 2022 0.68% 97.26%

8 1804 0.61% 97.87%

9 1508 0.51% 98.38%

10 1350 0.45% 98.83%

11 1232 0.41% 99.24%

12 2316 0.78% 100%

Table 15: Frequency distribution table of the number of yearly link identification windows that a pair gets

identified as economic neighbors for all possible pairs (i, j) in our sample. Note: A pair identified in k yearly

windows could get multiple co-mentions within each window.
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Finance Durbs Energy Hi-tec Health Manuf Nondur Other Shops Tel Utilities

Finance 1840 81 256 777 315 529 273 573 568 116 235

0.33 0.01 0.05 0.14 0.06 0.10 0.05 0.10 0.10 0.02 0.04

Durbs 81 12 14 67 16 72 27 49 45 10 13

0.20 0.03 0.03 0.17 0.04 0.18 0.07 0.12 0.11 0.02 0.03

Energy 256 14 372 147 42 115 51 153 83 20 172

0.18 0.01 0.26 0.10 0.03 0.08 0.04 0.11 0.06 0.01 0.12

Hi-tec 777 67 147 1376 227 419 182 439 403 126 86

0.18 0.02 0.03 0.32 0.05 0.10 0.04 0.10 0.09 0.03 0.02

Health 315 16 42 227 370 111 71 134 143 28 19

0.21 0.01 0.03 0.15 0.25 0.08 0.05 0.09 0.10 0.02 0.01

Manuf 529 72 115 419 111 470 134 287 211 43 62

0.220 0.03 0.05 0.17 0.05 0.19 0.05 0.12 0.09 0.02 0.03

Nondur 273 27 51 182 71 134 196 152 244 42 25

0.20 0.02 0.04 0.13 0.05 0.10 0.14 0.11 0.17 0.03 0.02

Other 573 49 153 439 134 287 152 344 295 63 138

0.22 0.02 0.06 0.17 0.05 0.11 0.06 0.13 0.11 0.02 0.05

Shops 568 45 83 403 143 211 244 295 698 73 40

0.20 0.02 0.03 0.14 0.05 0.08 0.09 0.11 0.25 0.03 0.01

Telcm 116 10 20 126 28 43 42 63 73 18 22

0.21 0.02 0.04 0.22 0.05 0.08 0.07 0.11 0.13 0.03 0.04

Utilities 235 13 172 86 19 62 25 138 40 22 366

0.20 0.01 0.15 0.07 0.02 0.05 0.02 0.12 0.03 0.02 0.31

Table 16: Links aggregated at industry level. Note: The adjacency matrix is construct using threshold

m = 1. we use Fama-French 12 industry classification. For each panel, the first row gives the number of intra

or inter industry pairs identified, and the second row gives the proportion to total links firms in that industry

have.
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Finance Durbs Energy Hi-tec Health Manuf Nondur Other Shops Tel Utilities

Finance 1496 65 193 566 233 377 193 451 397 84 173

0.35 0.02 0.05 0.13 0.06 0.09 0.05 0.11 0.09 0.02 0.04

Durbs 65 12 8 41 8 43 14 36 29 8 7

0.24 0.04 0.03 0.15 0.03 0.16 0.05 0.13 0.11 0.03 0.03

Energy 193 8 294 87 18 61 29 95 44 11 110

0.20 0.01 0.31 0.09 0.02 0.06 0.03 0.10 0.05 0.01 0.12

Hi-tec 566 41 87 1040 123 254 103 311 254 85 40

0.19 0.01 0.03 0.36 0.04 0.09 0.04 0.11 0.09 0.03 0.01

Health 233 8 18 123 288 64 40 86 75 17 4

0.24 0.01 0.02 0.13 0.30 0.07 0.04 0.09 0.08 0.02 0

Manuf 377 43 61 254 64 264 84 205 109 26 20

0.25 0.03 0.04 0.17 0.04 0.18 0.06 0.14 0.07 0.02 0.01

Nondur 193 14 29 103 40 84 144 97 158 30 12

0.21 0.02 0.03 0.11 0.04 0.09 0.16 0.11 0.17 0.03 0.01

Other 451 36 95 311 86 205 97 256 177 52 84

0.24 0.02 0.05 0.17 0.05 0.11 0.05 0.14 0.10 0.03 0.05

Shops 397 29 44 254 75 109 158 177 536 48 19

0.22 0.02 0.02 0.14 0.04 0.06 0.09 0.10 0.29 0.03 0.01

Telcm 84 8 11 85 17 26 30 52 48 18 13

0.21 0.02 0.03 0.22 0.04 0.07 0.08 0.13 0.12 0.05 0.03

Utilities 173 7 110 40 4 20 12 84 19 13 290

0.22 0.01 0.14 0.05 0.01 0.03 0.02 0.11 0.02 0.02 0.38

Table 17: Links aggregated at industry level. Note: The adjacency matrix is construct using threshold

m = 2. we use Fama-French 12 industry classification. For each panel, the first row gives the number of intra

or inter industry pairs identified, and the second row gives the proportion to total links firms in that industry

have.
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Finance Durbs Energy Hi-tec Health Manuf Nondur Other Shops Tel Utilities

Finance 1250 50 153 415 187 289 160 380 315 61 136

0.37 0.01 0.05 0.12 0.06 0.09 0.05 0.11 0.09 0.02 0.04

Durbs 50 8 7 29 5 31 10 30 20 5 4

0.25 0.04 0.04 0.15 0.03 0.16 0.05 0.15 0.10 0.03 0.02

Energy 153 7 246 54 11 42 19 72 22 8 60

0.22 0.01 0.35 0.08 0.02 0.06 0.03 0.10 0.03 0.01 0.09

Hi-tec 415 29 54 832 82 172 63 235 164 73 23

0.19 0.01 0.03 0.39 0.04 0.08 0.03 0.11 0.08 0.03 0.01

Health 187 5 11 82 246 44 26 67 44 9 2

0.26 0.01 0.02 0.11 0.34 0.06 0.04 0.09 0.06 0.01 0

Manuf 289 31 42 172 44 186 55 156 62 16 10

0.27 0.03 0.04 0.16 0.04 0.17 0.05 0.15 0.06 0.02 0.01

Nondur 160 10 19 63 26 55 112 75 114 21 5

0.24 0.02 0.03 0.10 0.04 0.08 0.17 0.11 0.17 0.03 0.01

Other 380 30 72 235 67 156 75 210 126 30 63

0.26 0.02 0.05 0.16 0.05 0.11 0.05 0.15 0.09 0.02 0.04

Shops 315 20 22 164 44 62 114 126 394 32 10

0.24 0.02 0.02 0.13 0.03 0.05 0.09 0.10 0.30 0.02 0.01

Telcm 61 5 8 73 9 16 21 30 32 16 8

0.22 0.02 0.03 0.26 0.03 0.06 0.08 0.11 0.11 0.06 0.03

Utilities 136 4 60 23 2 10 5 63 10 8 214

0.25 0.01 0.11 0.04 0 0.02 0.01 0.12 0.02 0.01 0.40

Table 18: Links aggregated at industry level. Note: The adjacency matrix is construct using threshold

m = 3. we use Fama-French 12 industry classification. For each panel, the first row gives the number of intra

or inter industry pairs identified, and the second row gives the proportion to total links firms in that industry

have.
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(1) Factor Component (2) Spatial Component

α β1 β2 β3 β4 β5 β6 β7 ψ

(1) Spatial CAPM

Mean Group Estimates 0.015 0.597 0.417

( 0.001) ( 0.021) ( 0.019)

% significant (at 5% level) 3.1% 79.4% 73.3%

Np 394 394 387

(2) Spatial Factor Model (with FF3)

Mean Group Estimates 0.013 0.569 0.127 -0.131 0.452

( 0.001) ( 0.021) ( 0.014) ( 0.022) ( 0.018)

% significant (at 5% level) 1.7% 74.4% 51.0% 69.0% 75.1%

Np 394 394 394 394 387

(3) Spatial Factor Model (with FF5)

Mean Group Estimates 0.013 0.584 0.142 -0.130 0.141 0.173 0.455

( 0.001) ( 0.021) ( 0.014) ( 0.023) ( 0.022) ( 0.021) ( 0.018)

% significant (at 5% level) 2.0% 75.1% 51.5% 68.0% 50.3% 47.5% 76.4%

Np 394 394 394 394 394 394 387

(4) Spatial Factor Model (with FF5+MOM)

Mean Group Estimates 0.013 0.591 0.143 -0.140 0.139 0.181 -0.022 0.447

( 0.001) ( 0.021) ( 0.014) ( 0.021) ( 0.022) ( 0.021) ( 0.007) ( 0.019)

% significant (at 5% level) 1.4% 75.4% 51.3% 62.4% 49.7% 47.5% 30.5% 74.9%

Np 394 394 394 394 394 394 394 387

(5) Spatial Factor Model (with FF5+MOM+MA)

Mean Group Estimates 0.014 0.594 0.104 -0.097 0.120 0.146 -0.034 -0.182 0.450

( 0.001) ( 0.021) ( 0.013) ( 0.019) ( 0.021) ( 0.022) ( 0.007) ( 0.023) ( 0.019)

% significant (at 5% level) 2.5% 75.6% 41.6% 53.8% 45.7% 44.9% 26.9% 41.4% 74.4%

Np 394 394 394 394 394 394 394 394 387

Table 19: QML estimation results of Equation 29 to Equation 33 using full sample. Note: threshold

m = 2. For each panel, the first row gives the mean group (MG) estimates for each parameter with their

standard errors in the parenthesis. The third row of each panel gives the percentages of unrestricted units with

statistically significant parameters at 5% level (with multiple testing correction), and the last row gives the

number of unrestricted units Np for each parameter.
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(1) Factor Component (2) Spatial Component

α β1 β2 β3 β4 β5 β6 β7 ψ

(1) Spatial CAPM

Mean Group Estimates 0.015 0.628 0.392

( 0.001) ( 0.021) ( 0.019)

% significant (at 5% level) 2.8% 77.9% 73.6%

Np 394 394 384

(2) Spatial Factor Model (with FF3)

Mean Group Estimates 0.014 0.605 0.126 -0.120 0.422

( 0.001) ( 0.020) ( 0.014) ( 0.022) ( 0.018)

% significant (at 5% level) 1.5% 71.1% 51.3% 69.3% 76.4%

Np 394 394 394 394 384

(3) Spatial Factor Model (with FF5)

Mean Group Estimates 0.013 0.619 0.141 -0.119 0.140 0.170 0.424

( 0.001) ( 0.020) ( 0.014) ( 0.023) ( 0.022) ( 0.021) ( 0.018)

% significant (at 5% level) 1.7% 73.9% 51.5% 68.0% 50.3% 46.7% 76.1%

Np 394 394 394 394 394 394 384

(4) Spatial Factor Model (with FF5+MOM)

Mean Group Estimates 0.013 0.627 0.143 -0.133 0.138 0.179 -0.027 0.416

( 0.001) ( 0.021) ( 0.014) ( 0.021) ( 0.022) ( 0.021) ( 0.007) ( 0.018)

% significant (at 5% level) 1.4% 73.1% 50.8% 61.9% 49.5% 47.2% 30.2% 74.4%

Np 394 394 394 394 394 394 394 384

(5) Spatial Factor Model (with FF5+MOM+MA)

Mean Group Estimates 0.015 0.631 0.104 -0.090 0.120 0.146 -0.038 -0.176 0.417

( 0.001) ( 0.021) ( 0.013) ( 0.019) ( 0.021) ( 0.022) ( 0.007) ( 0.023) ( 0.018)

% significant (at 5% level) 1.9% 72.6% 41.9% 54.8% 45.9% 44.9% 27.7% 41.4% 74.9%

Np 394 394 394 394 394 394 394 394 384

Table 20: QML estimation results of Equation 29 to Equation 33 using full sample. Note: threshold

m = 3. For each panel, the first row gives the mean group (MG) estimates for each parameter with their

standard errors in the parenthesis. The third row of each panel gives the percentages of unrestricted units with

statistically significant parameters at 5% level (with multiple testing correction), and the last row gives the

number of unrestricted units Np for each parameter.
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(1) Factor Component (2) Spatial Component

α β1 β2 β3 β4 β5 β6 β7 ψ

(1)Sample 1: 04-07

MG Estimates 0.024 0.507 0.100 -0.069 -0.004 0.067 0.086 -0.192 0.482

( 0.003) ( 0.024) ( 0.016) ( 0.025) ( 0.027) ( 0.027) ( 0.020) ( 0.021) ( 0.021)

% sig (at 5%) 5.9% 43.4% 12.2% 20.6% 13.2% 13.7% 25.4% 8.4% 51.3%

Np 394 394 394 394 394 394 394 394 386

(1)Sample 2: 08-11

MG Estimates 0.014 0.599 0.106 -0.093 0.124 0.100 -0.043 -0.126 0.460

( 0.002) ( 0.023) ( 0.016) ( 0.020) ( 0.024) ( 0.032) ( 0.009) ( 0.025) ( 0.020)

% sig (at 5%) 0.0% 63.5% 27.7% 23.1% 21.6% 30.2% 17.5% 16.5% 55.1%

Np 394 394 394 394 394 394 394 394 385

(1)Sample 3: 12-15

MG Estimates 0.003 0.550 0.047 -0.122 0.085 0.160 -0.068 -0.214 0.470

( 0.002) ( 0.024) ( 0.013) ( 0.021) ( 0.019) ( 0.026) ( 0.017) ( 0.024) ( 0.021)

% sig (at 5%) 2.8% 50.8% 12.7% 22.8% 10.9% 17.5% 24.9% 19.8% 55.8%

Np 394 394 394 394 394 394 394 394 387

Table 21: QML estimation results of the Equation 33 using sub-samples. Note: threshold m = 1.

Each panel gives the results for Equation 33 estimated using a four-year sub-sample. With each panel, the first

row gives the mean group (MG) estimates for each parameter with their standard errors in the parenthesis.

The third row of each panel gives the percentages of unrestricted units with statistically significant parameters

at 5% level (with multiple testing correction), and the last row gives the number of unrestricted units Np for

each parameter.
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(1) Factor Component (2) Spatial Component
α β1 β2 β3 β4 β5 β6 β7 βI ψ

Panel A: Finance

MG Estimates 0.007 0.357 0.017 0.293 0.065 -0.002 -0.050 0.266 0.229 0.552

( 0.003) ( 0.062) ( 0.051) ( 0.050) ( 0.057) ( 0.048) ( 0.018) ( 0.056) ( 0.057) ( 0.048)

% Sig(at 5%) 2.9% 69.1% 44.1% 48.5% 38.2% 25.0% 26.5% 38.2% 36.8% 76.5%

Np 68 68 68 68 68 68 68 68 68 68

Panel B: Consumer

MG Estimates 0.001 0.097 -0.215 -0.199 0.232 0.295 0.008 -0.141 0.551 0.376

( 0.003) ( 0.054) ( 0.025) ( 0.022) ( 0.024) ( 0.028) ( 0.012) ( 0.026) ( 0.052) ( 0.038)

% Sig(at 5%) 1.3% 57.3% 44.0% 52.0% 42.7% 42.7% 13.3% 17.3% 78.7% 72.0%

Np 75 75 75 75 75 75 75 75 75 75

Panel C: Health

MG Estimates 0.009 0.288 -0.215 -0.250 0.105 0.213 0.067 -0.096 0.347 0.315

( 0.007) ( 0.055) ( 0.036) ( 0.037) ( 0.041) ( 0.046) ( 0.022) ( 0.040) ( 0.034) ( 0.061)

% Sig(at 5%) 3.6% 64.3% 57.1% 53.6% 17.9% 39.3% 32.1% 21.4% 92.9% 71.4%

Np 28 28 28 28 28 28 28 28 28 28

Panel D: Hi-tech

MG Estimates 0.017 0.627 0.118 -0.370 -0.311 0.238 -0.043 -0.139 -0.005 0.420

( 0.004) ( 0.042) ( 0.038) ( 0.028) ( 0.049) ( 0.042) ( 0.012) ( 0.026) ( 0.034) ( 0.041)

% Sig(at 5%) 4.3% 74.3% 37.1% 67.1% 41.4% 37.1% 17.1% 14.3% 34.3% 68.1%

Np 70 70 70 70 70 70 70 70 70 69

Panel E: Manufacturing

MG Estimates -0.002 0.017 -0.269 -0.137 0.240 0.146 0.040 -0.221 0.690 0.417

( 0.003) ( 0.045) ( 0.028) ( 0.018) ( 0.020) ( 0.032) ( 0.011) ( 0.025) ( 0.046) ( 0.036)

% Sig(at 5%) 3.5% 57.5% 65.5% 30.1% 41.6% 46.9% 25.7% 36.3% 87.6% 74.8%

Np 113 113 113 113 113 113 113 113 113 107

Panel F: Others

MG Estimates 0.002 0.357 0.016 -0.170 0.218 0.204 -0.038 -0.269 0.306 0.445

( 0.005) ( 0.082) ( 0.045) ( 0.046) ( 0.044) ( 0.056) ( 0.020) ( 0.050) ( 0.049) ( 0.063)

% Sig(at 5%) 0.0% 55.0% 17.5% 50.0% 27.5% 45.0% 20.0% 42.5% 47.5% 75.0%

Np 40 40 40 40 40 40 40 40 40 40

Table 22: QML estimation results of spatial factor model with Fama-French five factors plus

Momentum, and Media-Attention factors, and industry factor (Equation 35). Parameters sum-

marized by industry.

α β1 β2 β3 β4 β5 β6 β7 β8 β9 β10 β11 βI ψ

Panel A: Finance

MG 0.007 0.361 0.018 0.292 0.063 0.000 -0.050 0.269 -0.018 0.010 -0.300 -2.722 0.229 0.550

( 0.003) ( 0.062) ( 0.051) ( 0.051) ( 0.057) ( 0.048) ( 0.018) ( 0.055) ( 0.011) ( 0.004) ( 0.093) ( 3.138) ( 0.057) ( 0.048)

%sig 2.9% 69.1% 44.1% 50.0% 38.2% 25.0% 23.5% 38.2% 0.0% 0.0% 1.5% 1.5% 35.3% 76.5%

Np 68 68 68 68 68 68 68 68 68 68 68 68 68 68

Panel B: Consumer

MG 0.001 0.091 -0.221 -0.203 0.229 0.300 0.006 -0.135 -0.001 0.006 -0.291 -11.496 0.563 0.374

( 0.003) ( 0.054) ( 0.025) ( 0.022) ( 0.024) ( 0.028) ( 0.012) ( 0.026) ( 0.010) ( 0.003) ( 0.069) ( 2.493) ( 0.053) ( 0.038)

%sig 2.7% 56.0% 46.7% 54.7% 42.7% 45.3% 13.3% 16.0% 0.0% 0.0% 0.0% 1.3% 78.7% 70.7%

Np 75 75 75 75 75 75 75 75 75 75 75 75 75 75

Panel C: Health

MG 0.009 0.284 -0.219 -0.252 0.112 0.222 0.063 -0.092 -0.037 0.015 -0.214 -5.586 0.356 0.314

( 0.007) ( 0.055) ( 0.037) ( 0.037) ( 0.041) ( 0.045) ( 0.021) ( 0.039) ( 0.023) ( 0.006) ( 0.093) ( 4.856) ( 0.034) ( 0.061)

%sig 7.1% 64.3% 60.7% 53.6% 21.4% 39.3% 28.6% 21.4% 0.0% 0.0% 0.0% 0.0% 92.9% 71.4%

Np 28 28 28 28 28 28 28 28 28 28 28 28 28 28

Panel D: Hi-tech

MG 0.017 0.630 0.118 -0.369 -0.313 0.237 -0.042 -0.140 -0.033 0.012 -0.129 5.507 -0.006 0.419

( 0.004) ( 0.042) ( 0.038) ( 0.028) ( 0.049) ( 0.041) ( 0.012) ( 0.027) ( 0.013) ( 0.004) ( 0.075) ( 2.622) ( 0.034) ( 0.041)

%sig 4.3% 75.7% 37.1% 67.1% 41.4% 35.7% 15.7% 15.7% 0.0% 0.0% 0.0% 0.0% 32.9% 65.2%

Np 70 70 70 70 70 70 70 70 70 70 70 70 70 69

Panel E: Manufacturing

MG -0.002 0.017 -0.269 -0.137 0.240 0.147 0.040 -0.221 -0.027 0.003 -0.145 2.920 0.691 0.417

( 0.003) ( 0.046) ( 0.028) ( 0.019) ( 0.020) ( 0.031) ( 0.011) ( 0.025) ( 0.007) ( 0.002) ( 0.055) ( 1.676) ( 0.046) ( 0.036)

%sig 3.5% 58.4% 65.5% 29.2% 41.6% 46.0% 26.5% 36.3% 0.0% 0.0% 0.9% 0.0% 87.6% 73.8%

Np 113 113 113 113 113 113 113 113 113 113 113 113 113 107

Panel F: Others

MG 0.001 0.352 0.012 -0.175 0.219 0.211 -0.039 -0.263 -0.029 0.007 -0.333 -5.989 0.316 0.444

( 0.005) ( 0.082) ( 0.045) ( 0.046) ( 0.044) ( 0.056) ( 0.020) ( 0.050) ( 0.015) ( 0.005) ( 0.095) ( 3.184) ( 0.049) ( 0.063)

%sig 0.0% 55.0% 17.5% 50.0% 27.5% 45.0% 22.5% 40.0% 0.0% 0.0% 2.5% 0.0% 47.5% 75.0%

Np 40 40 40 40 40 40 40 40 40 40 40 40 40 40

Table 23: QML estimation results of spatial factor model with both tradable factors and macro

factors, and industry factor (Equation 34). Parameters summarized by industry.
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(1) Factor Component (2) Spatial-temporal Component

α β1 β2 β3 β4 β5 β6 β7 ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

(1) Spatial CAPM

MG 0.015 0.564 0.446 0.002 -0.008 0.001 -0.003 0.004

( 0.001) ( 0.022) ( 0.020) ( 0.003) ( 0.002) ( 0.002) ( 0.002) ( 0.001)

%sig 3.1% 78.4% 76.5% 21.7% 5.9% 2.3% 5.4% 1.3%

Np 394 394 387 387 387 387 387 387

(2) Spatial Factor Model (with FF3)

MG 0.013 0.529 0.129 -0.137 0.489 0.002 -0.008 -0.001 -0.001 0.003

( 0.001) ( 0.021) ( 0.014) ( 0.022) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 3.1% 74.6% 50.5% 68.8% 78.6% 23.3% 4.7% 2.3% 5.4% 1.3%

Np 394 394 394 394 387 387 387 387 387 387

(3) Spatial Factor Model (with FF5)

MG 0.011 0.544 0.144 -0.137 0.140 0.179 0.493 0.007 -0.007 -0.001 -0.002 0.002

( 0.001) ( 0.021) ( 0.014) ( 0.023) ( 0.022) ( 0.021) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 3.1% 75.1% 52.0% 68.5% 50.3% 44.4% 79.6% 22.5% 4.1% 2.8% 4.1% 1.6%

Np 394 394 394 394 394 394 387 387 387 387 387 387

(4) Spatial Factor Model (with FF5+MOM)

MG 0.015 0.471 0.124 -0.116 0.074 0.113 -0.010 0.545 0.002 -0.014 0.002 -0.008 0.005

( 0.001) ( 0.022) ( 0.014) ( 0.021) ( 0.022) ( 0.021) ( 0.007) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 3.1% 75.9% 52.3% 61.9% 50.5% 45.9% 30.5% 78.0% 20.4% 4.1% 3.1% 4.1% 1.6%

Np 394 394 394 394 394 394 394 387 387 387 387 387 387

(5) Spatial Factor Model (with FF5+MOM+MA)

MG 0.014 0.552 0.105 -0.102 0.118 0.147 -0.030 -0.182 0.489 0.003 -0.006 0.000 -0.001 0.002

( 0.001) ( 0.022) ( 0.013) ( 0.019) ( 0.021) ( 0.022) ( 0.007) ( 0.023) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 3.1% 75.6% 43.1% 53.8% 47.0% 44.2% 27.4% 40.4% 77.3% 19.6% 4.4% 3.4% 4.7% 1.6%

Np 394 394 394 394 394 394 394 394 387 387 387 387 387 387

Table 24: QML estimation results of heterogeneous coefficients spatial-temporal model using full

sample (all factors are traded). Note: m = 1, L = 5. For each panel , the first row gives the mean group

(MG) estimates for each parameter with their standard errors in the parenthesis. The third row of each panel

gives the percentages of unrestricted units with statistically significant parameters at 5% level, and the last row

gives the number of unrestricted units Np for each parameter.

(1) Factor Component (2) Spatial-temporal Component

α . . . β8 β9 β10 β11 ψ0 ψ1 ψ2 ψ3 ψ4 ψ5

MG 0.014 . . . -0.021 0.001 -0.047 4.230 0.489 0.003 -0.006 0.000 -0.001 0.002

( 0.001) . . . ( 0.005) ( 0.002) ( 0.027) ( 1.067) ( 0.019) ( 0.003) ( 0.002) ( 0.001) ( 0.002) ( 0.001)

%sig 3.1% . . . 0.0% 0.0% 0.0% 0.3% 77.3% 17.8% 3.9% 3.4% 4.4% 1.6%

Np 394 . . . 394 394 394 394 387 387 387 387 387 387

Table 25: QML estimation results of heterogeneous coefficients spatial-temporal model using full

sample (mixture of tradable and macro factors). Note: m = 1, L = 5. For each panel , the first row

gives the mean group (MG) estimates for each parameter with their standard errors in the parenthesis. The

third row of each panel gives the percentages of unrestricted units with statistically significant parameters at

5% level, and the last row gives the number of unrestricted units Np for each parameter. To save space, we only

report the estimates for non-tradable factors and spatial-temporal coefficients.
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Figure 1: Histogram of bootstrapped ρ̂bij for all i ̸= j, b = 1, . . . , 1000.
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