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Abstract

We propose two novel frameworks that incorporate auxiliary network information into

the estimation of large covariance matrices —Network Guided Thresholding and Network

Guided Banding. Compared with existing methods which either ignores network informa-

tion (e.g., the thresholding or shrinkage estimator) or imposes overly restrictive structure

(e.g., the banding estimator), our proposed estimators take advantage of the auxiliary

network information available in the era of big data. Our two estimators are designed to

adapt to the specific features of the auxiliary network information at hand and to different

structures of the covariance matrix. We show that both Network Guided estimators have

great convergence rates over a larger class of sparse covariance matrices. Simulation stud-

ies indicate that these estimators generally outperform other purely statistical methods,
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particularly when the true covariance matrix is sparse and the auxiliary network provides

reliable information. Empirically, we apply our methods to estimate the covariance ma-

trix of asset returns using various forms of auxiliary network data to construct the Global

Minimum Variance (GMV) and Mean-Variance Optimal (MVO) portfolios, which deliver

better out-of-sample results compared to competitors.

Keywords: Big data; network; large covariance matrix; thresholding; banding.
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1 Introduction

Covariance matrix estimation is an important problem in statistics and econometrics. Sup-

pose that we have T observations (Xt : t = 1, · · · , T ) of an N -dimensional vectors Xt =

(X1t, . . . , XNt)
⊺ and we are interested in estimating the covariance matrix Σ of Xt. For many

important empirical questions, the dimensionality N of the random vector under inspection is

large and often larger than the sample size T , making the estimation of the covariance matrix

challenging. For example, in portfolio management, we often need to estimate the covari-

ance matrix of a large number of asset returns with a relatively short time series span. It is

well known that the sample covariance matrix is ill-conditioned when the dimension exceeds

the sample size. In that case, a consistent estimator for the covariance matrix can still be con-

structed using regularization techniques if the covariance matrix has additional structures. Two

classes of covariance matrices with additional structures that have been extensively studied are

bandable and sparse covariance matrices. This paper aims to generalize these two classes of

covariance matrices and improve the associated estimators when auxiliary network information

is available.

In the era of big data, we have easy access to auxiliary information beyond the observa-

tions of {Xt}Tt=1 that could potentially help us learn about the underlying structure of the

covariance matrix (i.e., interconnectedness among entities).1 Consider the case of equity return

covariance. Israelsen (2016) found that stocks covered by similar sets of analysts co-move a

lot. Ge et al. (2022) documented that stocks co-mentioned in business news exhibit excess

co-movement beyond risk factors. Applying textual analysis to firms’ 10-K reports, Hoberg

and Phillips (2016) constructed peer groups within which firms are fundamentally similar and,

therefore, tend to co-move. All of the aforementioned auxiliary network information may help

us understand the connectivity structure among stocks. However, the current literature either

completely ignores this type of readily available auxiliary information (e.g., thresholding and

1 Throughout this paper, we use the terms interconnectedness, network, connectivity, and linkages inter-

changeably.
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shrinkage estimators) or utilizes some simple network structure under very restrictive settings

(e.g., banding and tapering estimators).

In this paper, we propose a novel framework for incorporating auxiliary network information

into the estimation of large covariance matrices. Depending on the features of the auxiliary

network information at hand and the structure of the covariance matrix, we provide two separate

methods for application and derive their theories accordingly.

The first method is Network Guided Thresholding. The method is applicable when auxil-

iary information identifies the location of large elements in the covariance matrix. Industry

information is an example of such auxiliary information as it implies a block-diagonal network

where every node is equally connected within an industry. The original series of thresholding

methods (Bickel and Levina (2008a), Cai and Liu (2011), Fan et al. (2013)) retain the large

elements in sample covariance and shrink the rest based on statistical information under the

assumption of sparsity (or conditional sparsity). These thresholding estimators do not utilize

any location information. In contrast, we use auxiliary network information to identify the

location of large elements. We show that our proposed method improves efficiency by using

additional information, and is applicable to a larger class of covariance matrices with a more

refined notion of sparsity. With this additional information, we retain the large elements iden-

tified by the auxiliary network information in the sample covariance and then apply generalized

thresholding to the remaining elements. The work closest to our method is Fan et al. (2016),

where the authors utilize sector information and apply location-based thresholding by assum-

ing that within-sector correlations are large and across-sector correlations are small and can

therefore be ignored. However, the residual correlation structure of the factor model is not as

simple as a block diagonal assumed by Fan et al. (2016), and our method accommodates more

general structures. We derive the theoretical properties of the Network Guided Thresholding

estimator. Compared with Bickel and Levina (2008a), we consider a larger class of sparse

covariance matrices by using auxiliary network information to distinguish between large and

small elements and to quantify their behaviors separately. We show the consistency of the esti-
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mator in the operator norm under certain conditions uniformly over the class of matrices that

satisfy our sparsity condition. Next, we show that the Network Guided Thresholding estimator

achieves a better convergence rate compared to Bickel and Levina (2008a), particularly when

the auxiliary information is of high quality.

The second method we propose is called Network Guided Banding. Bickel and Levina

(2008b) showed that uniformly over a class of the “approximately bandable” matrices, the

banding estimator shows a superior convergence rate. From their definition, the elements of

such a matrix are smaller in magnitude as one moves away from the diagonal. This definition is

appropriate for applications with natural orderings of variables, such as time series, climatology,

and spectroscopy. However, in most cases, such orderings do not exist, which means that

the banding estimator cannot be applied. In this paper, we propose a theoretical framework

that expands the class of bandable matrices, making this method applicable to a broader

range of scenarios. Compared with the original banding estimator, one key feature of this

new Network Guided Banding method is that it is permutation-invariant. Unlike the Network

Guided Thresholding, this method requires auxiliary network information to reveal the relative

importance of neighbors for each node to be applicable. Again, in the case of the equity

return covariance matrix, the auxiliary sector/industry network provides unweighted linkage

information, meaning it simply indicates whether a pair of stocks are linked without quantifying

its strength. In that case, we may apply the Network Guided Thresholding, but not the Network

Guided Banding. In contrast, the analyst co-coverage network (Israelsen (2016)), news co-

mentioning network (Ge et al. (2022)), and text-based product network (Hoberg and Phillips

(2016)) are all weighted, meaning they assign different levels of strength to each connection.

This allows us to use the degree of connectivity to rank the relative importance of neighbors for

each node. For example, in the news co-mentioning network, firms mentioned together in the

same piece of news are considered linked, and the frequency of these co-mentions can be used

as a proxy for the strength of the linkages, thereby helping to rank their relative importance

(Scherbina and Schlusche (2015), Schwenkler and Zheng (2019), Ge et al. (2022)). With these
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available auxiliary network information, we can apply both the Network Guided Thresholding

and the Network Guided Banding. We show the consistency of the estimator in the operator

norm uniformly over the class of matrices that satisfy a generalised bandable condition. We

also show that the Network Guided Banding estimator achieves optimal rate as in Bickel and

Levina (2008b) over a larger class of bandable matrices.

For both estimators, our theory allows for measurement errors when using the auxiliary

information to identify the important elements, which are crucial in practice. For the Network

Guided Thresholding estimator, we allow for errors in identifying the location of the relatively

large elements. For the Network Guided Banding estimator, we also allow for asymmetry in

the relative importance. Details and a discussion of measurement errors are given in Section 3.

In Monte Carlo experiments, we assume that asset returns are generated from a factor

model where the true covariance matrix of idiosyncratic returns is sparse. For the applica-

tion of the Network-Guided methods, we generate auxiliary information of varying quality. We

then compare the performance of our two Network-Guided estimators with a set of competitors,

including conventional thresholding and linear and nonlinear shrinkage approaches. The simu-

lation results show that, as long as the auxiliary network information is of reasonable quality,

our Network-Guided estimators consistently demonstrate superior finite sample performance

compared to all benchmark methods. The relative performance of the two proposed estimators

depends on the structure of the true covariance matrix and the characteristics of the auxiliary

information.

Empirically, we apply our newly proposed Network-Guided estimators to construct Global

Minimum Variance (GMV) and Mean-Variance Optimal (MVO) portfolios by incorporating

auxiliary information. We utilize data from the Chinese stock market and adopt the Chinese

CH-4 factor model from Liu et al. (2019) to analyze asset returns. We explore various sources of

auxiliary information to identify linkages among listed stocks. Our first candidate is the news

co-mention network. Similarly to Ge et al. (2023), we consider two types of news-implied link-

ages: co-mentions within the same passage and co-mentions within the same sentence. Since

6



the frequency of co-mentions may serve as a proxy for the strength of linkage, these two types

of news co-mention networks are weighted and can therefore be used as input for both the

Network Guided Thresholding and Banding estimators. Additionally, we explore the analyst

co-coverage network in China. This auxiliary information quantifies the strength of connectivity

between two entities through a continuous measure (the number of analysts who co-cover the

two entities), making it applicable to both of our proposed estimators. Finally, we consider the

traditional industry classification. To assess the practical value of incorporating this auxiliary

information, we construct Global Minimum Variance (GMV) portfolios both with and with-

out these additional data sources. We also compare the out-of-sample performance of several

conventional statistical covariance matrix estimation methods. Our comparison spans different

sets of constituent stocks, including HS300, CSI500, and CSI800. Our findings consistently

indicate that incorporating auxiliary network information largely enhances the out-of-sample

performance of GMV and MVO portfolios.

Literature Review: A growing number of methods have been proposed in the literature to

study covariance matrix estimation when the dimensionality is large. Bickel and Levina (2008a)

developed a theory for universal thresholding, which assumes the diagonal of the covariance

matrix is uniformly bounded. Cai and Liu (2011) relaxed the uniform boundedness assumption

and proposed an adaptive thresholding estimator with entry-adaptive thresholds. Fan et al.

(2013) argued that common factors should be extracted first before applying thresholding when

there are “extremely spiked” eigenvalues in the covariance matrix, making it conditionally

sparse. Another strand of literature has attempted to correct the spectrum of the sample

covariance matrix instead of imposing sparsity. For instance, Ledoit and Wolf (2004) and Ledoit

and Wolf (2012) proposed linear and nonlinear shrinkage estimators that apply shrinkage to

the eigenvalues of the sample covariance matrix. The linear shrinkage estimator combines the

sample covariance matrix with a well-conditioned target matrix, such as the identity matrix.

The nonlinear shrinkage estimator adjusts the eigenvalues using the asymptotic Marchenko–

Pastur distribution. A key advantage of shrinkage estimators is that they are well-conditioned,
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while estimators based on sparsity often require selecting tuning parameters to ensure positive

definiteness. However, shrinkage estimators may be less effective when the true covariance

matrix is sparse. These aforementioned pure statistical methods rely solely on observations

of {Xt}Tt=1 and completely disregard any network information that might be available from

auxiliary data sources. There is also literature that embraces the use of very simple network

information. Bickel and Levina (2008b) proposed banding and tapering estimators, where

indices are ordered, and elements in the covariance matrix decrease in magnitude as one moves

away from the diagonal. They demonstrated that the banding estimator achieves a superior

convergence rate by leveraging the bandable structure. However, the underlying structure of

these bandable matrices is quite restrictive, making the banding estimator inapplicable in most

scenarios.

The novelty of this paper lies in augmenting the estimation of large covariance matrices

with auxiliary network information. Depending on the features of the auxiliary network infor-

mation at hand, we offer two distinct Network-Guided methods for application. We derive the

corresponding theories and demonstrate that both Network-Guided estimators exhibit strong

theoretical and numerical properties, as well as good empirical performance.

Although this paper focuses on applying network information to the estimation of large

static covariance matrices, the same idea can be extended to the estimation of large dynamic

covariance matrices. For instance, dynamic network information could be effectively incorpo-

rated into the conditioning information set, as suggested in Chen et al. (2019).

The remainder of this paper is structured as follows. Section 2 introduces the Network

Guided Thresholding estimator and the Network Guided Banding estimator. In Section

3, we lay down the assumptions and derive the convergence results. Section 4 presents

simulation studies that compare our proposed estimators with established baseline meth-

ods, while Section 5 provides an empirical application. Finally, Section 6 concludes. The

Appendix contains proofs. The ready-to-use Python code can be found at www.lishaoran.com.

8

www.lishaoran.com


Notation: For vector a ∈ Rd, ∥a∥ stands for the Euclidean norm, i.e., ∥a∥ = (a21 + · · · , a2d)
1/2.

For matrix A = (a1, · · · ,am) ∈ Rm×d, ∥A∥F denotes the matrix Frobenius norm, i.e.,

∥A∥F = (∥a1∥2 + · · ·+ ∥am∥2)1/2; ∥A∥ = inf
{
c > 0 : ∥Ax∥ ≤ c ∥x∥ , for all x ∈ Rd

}
is the op-

erator norm. For two real-valued sequences {aT} and {bT}, aT = o (bT ) implies aT/bT → 0

when T → ∞; aT = O (bT ) implies there exists some constant A, s.t. aT ≤ AbT for all T ;

aT ≍ bT means 0 < c < aT
bT

< C < ∞. We use [aij]m×n to denote an m × n matrix whose

(i, j)-th element is aij and JN×N to denote a N ×N unit matrix.

2 Model Setup

Suppose that we have observations Xt = (X1t, . . . , XNt)
⊺, t = 1, . . . , T of a N -dimensional

random vector Xt with mean E(Xt) = µ and variance E((Xt−µ)(Xt−µ)⊺) = Σ = [σij]N×N .

The sample covariance estimator is given as follows:

Σ̂ =
1

T

T∑
t=1

(Xt − X̄)(Xt − X̄)⊺ = [σ̂ij]N×N , (1)

where X̄ = 1
T

∑T
t=1 Xt. As mentioned in the introduction section, the sample covariance matrix

behaves poorly when N is large. In the following, we propose two theoretical frameworks for

augmenting large covariance matrix estimation with auxiliary network information. The choice

of framework depends on the specific features of the available auxiliary network information.

2.1 Network Guided Thresholding

When the auxiliary information identifies the location of large elements in the covariance matrix,

we propose the following Network Guided Thresholding method. Recall the following definition

of uniformity class of sparse covariance matrices given by Bickel and Levina (2008a),

Uτ (q, c0,M) =

{
Σ : σii ≤M,

N∑
j=1

|σij|q ≤ c0(N), for all i
}
. (2)
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Here, the sparsity pattern parameter q and sparsity magnitude parameter c0(N) jointly char-

acterize the requirements on the off-diagonal elements for the covariance matrix to be sparse.

The reason why we call q the sparsity pattern parameter and c0(N) the sparsity magnitude

parameter can be seen from the following two types of sparse covariance matrices, (1) one with

only a small number of non-zero off-diagonal elements with large magnitude, and (2) one with

off-diagonal elements that are all non-zero but small in magnitude. For q = 0, the expression∑N
j=1|σij|q counts the number of non-zero off-diagonal elements in each row and ignores the

magnitude of the non-zero elements. Hence, for the first type of covariance matrix, c0(N) can

be small as there are only a small number of non-zero elements, but c0(N) would have to be

N for the second type. On the other hand, if we fix a q that is close to 1, the second type of

sparse covariance matrix potentially has a much smaller magnitude c0(N). Intuitively, while q

indicates which type or pattern of sparsity is in place, c0(N) tells us how sparse the covariance

matrix is with respect to this pattern.

With these two examples in mind, it is now clear that one inconvenience of Uτ is that it tries

to capture two types of sparsity patterns with one set of parameters (q, c0(N)). Cai and Zhou

(2012) showed that the minimax optimal convergence rate is faster for estimating the sparse

covariance matrix of the first type and if the sparsity magnitude parameter c0(N) is smaller.

By incorporating auxiliary information about the sparsity pattern, particularly regarding the

location of the few large elements, we can treat the two types of sparsity separately with our

Network Guided Thresholding estimator, which is shown to have superior performance both in

theory and in numerical experiments. We consider the following extension to the uniformity

class in Equation 2 by treating the two sparsity patterns separately via the following Location

Indicator Matrix,

L = [Lij]N×N , Lij = I{|rij |>l} =


1, |rij| > l,

0, |rij| ≤ l.

(3)

This matrix is defined through the correlation coefficients matrix R = [rij]N×N and an observa-
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tion level parameter l > 0. rij represents the correlation coefficient between assets i and j. For

s ∈ {0, 1}, we use the shorthand notation Ls
ij = I{Lij=s}. L1 is the Location Indicator Matrix

of large elements that exceed the observation level l in absolute value in the correlation matrix,

and L0 is the Location Indicator Matrix of small elements that are below l in the correlation

matrix. For example, l = 0.1 means that the Location Indicator Matrix helps identify those

pairs with |rij| > 0.1. It is obvious that L1 = L and L0 = JN,N − L1, where JN,N is a unit

matrix. We then define the following uniformity class:

U1(q, c0, c1,M) =

{
Σ = DRD : σii ≤M,

∑
j

L1
ij ≤ c1 (N) ,

∑
j

L0
ij |rij|

q ≤ c0 (N) , for all i
}
,

(4)

where D = diag{√σ11, · · · ,
√
σNN}, R is the correlation coefficient matrix and L is the location

indicator matrix corresponding to R. By treating large elements ((i, j) pairs such that L1
ij = 1)

and small elements ((i, j) pairs such that L0
ij = 1) differently, this uniformity class allows for

separate restrictions on the number of large elements and the growth rate of the remaining

small elements. In the special case of l = 1, the class U1 reduces to the traditional uniformity

class Uτ .

Although the Location Indicator Matrix L = L(R, l) depends on the observation level l, we

can choose a l∗ = l∗(R) such that

max
1≤i≤N

∑
j

L1
ij ≍ max

1≤i≤N

∑
j

L0
ij |rij|

q, (5)

and L∗ = L(R, l∗). Then the class U1(q, c0, c1,M) can be defined without specifying the obser-

vation level l by replacing L with L∗ in Equation 4.

We propose the following Network Guided Thresholding Estimator for Σ ∈ U1,

TL,λ

(
R̂
)
=
[
sL,λ

(
σ̂ij/

√
σ̂iiσ̂jj

)]
N×N

with sL,λ (rij) = rijI{Lij=1} + sλ (rij) I{Lij=0}, (6)
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where sλ(x) is the generalized thresholding operator.2 The corresponding estimator for the

covariance matrix is

Σ̂T
L := D̂TL,λ

(
R̂
)
D̂.

Notice that the Location Indicator Matrix is unobserved, and we need to use auxiliary infor-

mation to estimate L and, therefore, Ls for s ∈ {0, 1}. Denote the estimator of the Location

Indicator Matrix as L̂. Then we have the feasible Network Guided Thresholding Estimator as

follows:

Σ̂T
L̂
:= D̂TL̂,λ

(
R̂
)
D̂, (7)

where we use the estimated Location Indication Matrix L̂. It is restrictive to assume that the

auxiliary information precisely identifies the location of the few large elements, and therefore,

we allow for estimation errors in L̂ as discussed later in Assumption 3.

In this framework, we have two thresholding parameters, λ and l. λ is an empirical tuning

parameter used to smooth out small estimates, commonly seen in traditional thresholding

methods. In contrast, l is an additional parameter that links the Location Indicator Matrix L

with the population covariance matrix and does not directly enter the estimator. In addition, to

obtain a better convergence rate, it is ideal to set λ ≥ l, which can further shrink the estimates

of those pairs with Lij = 0.

2.2 Network Guided Banding

When the auxiliary data reveal the relative importance of neighbors for each node, additional

information can be extracted, potentially improving the convergence rate. In such cases, we

propose the Network Guided Banding method. Recall that the original Banding and Tapering

methods are effective when there is a natural “order” or “distance” among variables; Bickel and

2 Commonly used thresholding operators such as hard thresholding, soft thresholding, and SCAD can be

applied with λ the threshold.
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Levina (2008b) considered the following uniformity class of covariance matrices:

Ub(ε, α, c) =

Σ : max
j

∑
i:|i−j|>k

|σij | ≤ ck−α for all k, and 0 < ε ≤ ρmin (Σ) ≤ ρmax (Σ) ≤ 1

ε

 , (8)

where ρmin (·) and ρmax (·) give the minimal and maximal eigenvalues of a matrix; ε is a

positive constant independent of N ; α > 0 captures the dependence structure in the class and

0 ≤ k < N . Bickel and Levina (2008b) showed that when this banding condition is satisfied, a

better convergence rate can be achieved by taking advantage of the underlying structure.

The original Banding and Tapering methods are primarily applicable to time series, which

have a natural ordering.3 In many practical applications, however, entities are not ordered.

Therefore, we extend their method by allowing for a more general underlying connectivity

(network) structure, making these methods applicable to a wider range of covariance matrices.

To begin, we define a new order ⟨{1, · · · , N} ,≻⟩ for an N -dimensional vector a = (a1, . . . , aN)
⊺

with distinct elements as follows:

i ≻ j ⇔ ai > aj.

Given a vector of relative importance a = (a1, . . . , aN)
⊺, we can use this order operator to sort

the elements from the vector. Then we use a descending (in terms of ≻) tuple (p1, . . . , pN) to

record the sorted result, where p1 ≻ p2 ≻ · · · ≻ pN . Notice that (p1, . . . , pN) is a permutation

of (1, . . . , N), where p1 gives the location index of the largest element (the most important)

and pN gives the index of the smallest element (the least important). For any positive integer

k, define Sa
k = {p1, ..., pk} as the set of indexes of the k-biggest elements under ≻ for vector

a. For example, if a = (1, 4, 3, 2), then the sorted tuple is (2, 3, 4, 1), Sa
2 = {2, 3}. Next, we

generalize the uniformity class considered in Bickel and Levina (2008b) (Equation 8) by directly

comparing the relative magnitudes (not a real “distance”) of entries for each row of a matrix.

We use the correlation counterpart of Equation 8 for a fair comparison under heteroskedasticity.

3 For a permuted matrix, there are also methodologies for estimating the banding structure. For example,

see Giraud et al. (2023).
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Specifically, we consider a generalized uniformity class of covariance matrices:

U2(ε, α, b0,M) =

Σ = DRD : max
i

σii < M,
∑

j /∈S
abs(ri)

k

|rij | < b0 (N) k−α for all i, k, and ρmax (R) ≤ 1

ε

 , (9)

where ri is the i-th column (row) of correlation matrix R, and abs (ri) = (|ri1| , · · · , |riN |)

gives the absolute values of the correlation coefficients. Sabs(ri)
k gives the set of indexes of the

k-biggest elements. Notice that when k = 1, Sabs(ri)
k = {i} as the self-correlation is always

the largest. When k > 1, Sabs(ri)
k includes i itself and the set of k − 1 nearest neighbours.

Essentially, the correlations between non-neighboring pairs need to be small under Equation 9.

Compared with the original banding, this method is permutation-invariant and accommodates

a more general connectivity (network) structure.

A Relative Importance Matrix C = [Cij]N×N can be defined as follows: For each row ri

of a correlation matrix R = [rij]N×N , we define cij to be the rank of |rij| in the set abs (ri).

For example, if |rij| is the smallest in abs (ri), then cij = 1; if |rij| is the second smallest then

cij = 2; and cii is always N . In this way, we can ensure that Sci
k = S

abs(ri)
k for all k, and C is

unique for a given R. For a correlation matrix R = [rij]N×N , we define a Relative Importance

Matrix C = [Cij]N×N with non-negative elements. For each row i (or column), the elements of

Ci = (Ci1, . . . , CiN) provide rankings based on the magnitude from abs(ri). Given the Relative

Importance Matrix C, we define the Network Guided Banding Estimator as follows:

Σ̂B
C = D̂BC,k

(
R̂
)
D̂ with BC,k

(
R̂
)
= [bC,k (r̂ij)]N×N ,

bC,k (rij) = rijI{i∈Scj
k ,j∈Sci

k } =


rij, i ∈ S

cj
k and j ∈ Sci

k ,

0, otherwise.

(10)

We do not observe the Relative Importance Matrix C. We need to form an estimator Ĉ utilizing

an auxiliary dataset. The feasible estimator is Σ̂B
Ĉ

.

It is noteworthy that Σ̂B
Ĉ

is not strictly a banding or tapering estimator because the k-
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neighbour relationship could be asymmetric, i.e., i ∈ S
cj
k ̸⇔ j ∈ Sci

k for a symmetric matrix

R. The asymmetry is important for modeling the correlation structure of financial assets. For

example, in a scale-free network, which is commonly observed in financial markets, a central

asset may be connected to many other assets, making it one of the k-nearest neighbors for many

nodes. However, the reverse is not necessarily true. Additionally, to implement the Network

Guided Banding estimation, we need to determine k, i.e., the number of neighbors each node

has. In practice, the optimal k can be selected via cross-validation.

2.3 Conditional Sparsity

Asset returns are exposed to common factor risks, leading to high co-movements in their returns,

making it inappropriate to assume sparsity for the return covariance matrix. Therefore, we make

a conditional sparsity assumption and adopt the following factor structure for asset returns:

yt = β0 + β1f1,t + β2f2,t + · · ·+ βKfK,t + ut

= β0 +Bft + ut,

(11)

t = 1, 2, · · · , T , where yt is the N×1 assets return at time t, ft is the K×1 vector of observable

factor returns, B = (β1,β2, · · · ,βK) is the N×K factor loading matrix, β0 is the mean vector,

and ut is the zero-mean idiosyncratic term, which may contain cross-sectional dependencies.

Factor models have long been employed in modeling asset returns; see, for example, Ross (1976),

Chamberlain and Rothschild (1982), Fama and French (1993), etc.

Under the factor structure and the assumption that factors ft and idiosyncratic returns ut

are independent, the covariance matrix of the returns can be decomposed into

Cov(yt,yt) = Σy = BΣfB
⊺ +Σu. (12)

We follow Fan et al. (2011) and assume Σu to be sparse, i.e., the covariance matrix of returns Σy

is conditionally sparse. Given that the factors are observable, the coefficients from Equation 11
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can be easily estimated using ordinary least squares (OLS). After obtaining B̂, the covariance

from common factor component is B̂Σ̂fB̂
⊺ where

Σ̂f =
1

T

T∑
t=1

(
ft − f

) (
ft − f

)⊺
, f =

1

T

T∑
t=1

ft. (13)

The challenge of estimating the return covariance matrix lies in the estimation of Σu. With

the OLS estimates, we can calculate the residuals as ût = yt − β̂0 − B̂ft. The conventional

estimator of Σu is Σ̂u = 1
T

∑T
t=1 ûtû

⊺
t = (σ̂ij)N×N . Depending on whether the auxiliary dataset

reveals weighted or unweighted network information, we can obtain estimates of the Location

Indicator Matrix or the Relative Importance Matrix. Then, we can apply the appropriate

network-guided approach to obtain the feasible Network Guided Thresholding Estimator Σ̂T
u,L̂

or feasible Network Guided Banding Estimator Σ̂B
u,Ĉ

.

3 Main Results

3.1 Theoretical Results

In this subsection, we introduce the assumptions and the corresponding theoretical properties

of Σ̂T
u,L̂

and Σ̂B
u,Ĉ

. In our analysis, both N and T can go to infinity, and N can be larger than T ,

but we restrict logN
T

→ 0. Proofs of all theorems are deferred to the appendix. For simplicity,

we may abuse the notation A to denote any sufficiently large constant that does not depend

on N and T .

Assumption 1. (a) Sequence {ut,ft} is strong stationary, α-mixing and ergodic, with ut

having zero means and covariance matrix Σu. The mixing coefficients
{
αmixing
t , t ≥ 0

}
satisfy

αmixing
t ≤ exp

(
−ϕ1t

ϕ2
)

for some positive constants ϕ1 and ϕ2 that do not depend on N (thus

uniformly mixing over N). Additionally, there are constants c, c, s.t., 0 < c < inf
i,j
V ar(uitujt) <

sup
i,j

V ar(uitujt) < c, c < ρmin (Σu) < ρmax (Σu) < c.

(b) The tail of the distribution of uit is uniformly bounded by an exponential-type tail,
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i.e., for some constant ϕ3, ϕ4 > 0 not depending on N , and for any x > 0, we have

supi P (|uit| > x) ≤ exp
{
−ϕ3x

ϕ4
}

.

(c) For some positive sequences κ1 (N, T ) = o (1) and aT = o(1), and a constant A

which does not depend on N and T , P
(
maxi

1
T

∑T
t=1 |uit − ûit|2 > Aa2T

)
≤ O (κ1(N, T )) and

P (maxi,t |uit − ûit| > A) = o (1).

(d) For some γ < 1, (logN)6/γ−1 = o(T ).

Remark: The first part of condition (a) allows the idiosyncratic components to be weakly

dependent, while the second part requires the well-posedness of Σ−1. Condition (b) ensures that

the distributions of uit have exponential-type tails, which allows us to apply the large deviation

theory. Condition (c) facilitates the study of the estimated error covariance matrix when direct

observations are not available. Conditions (a), (b), and (c) correspond to Assumptions 2.1,

2.2 in Fan et al. (2011). Condition (d) is an additional assumption to ensure good asymptotic

properties, as proposed in Theorem 2.1 of Fan et al. (2011). Given these assumptions, one can

easily show that

P

(
max
i,j

|σ̂ij − σij| > A

√
logN

T

)
= O

(
1

N2

)

for some constant A which does not depend on N and T . The proof can be found in Lemma

A.3 of Fan et al. (2011).

In addition, for the factor model, we borrow the following assumptions from Fan et al.

(2011).

Assumption 2. (a) There exists a constant A > 0, s.t., E (y2it) < A, E (f 2
it) < A, and βij < A

for all i, j, t. Besides, there exists a constant ϕ5 which satisfies 3ϕ−1
5 +ϕ−1

2 > 1 and ϕ6 > 0, s.t.,

sup
i
P (|fit| > x) ≤ exp

{
− (x/ϕ6)

ϕ5

}
.

(b) ρmin (Σf ) > 0 uniformly. In addition, there exists a postive definite matrix Ω, s.t.,∥∥ 1
N
B⊺B −Ω

∥∥ = o(1).
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(c) K = o (N), K4 (logN)2 = o (T ), and (logN)2/ϕ2−1 = o (T ).

Remark: Condition (a) ensures that the factors have finite variance and that the factor load-

ings are bounded. The exponential-type tail condition allows us to apply the Bernstein-type

inequality. The first part of condition (b) ensures that ρmin (Σy) is bounded away from zero,

while the second part implies that the factors should be pervasive. These conditions for factors

and loadings are easily satisfied when K is fixed and finite.

Note that Assumption 1 and Assumption 2 are common assumptions that we need to impose

for both types of network-guided estimators. In the following subsections, we outline the

assumptions required to establish the asymptotic properties of each network-guided estimator

and present the corresponding theoretical results.

3.1.1 Network Guided Thresholding Estimator

We assume that Σu ∈ U1(q, c0, c1,M) defined in Equation 4, which extends the sparsity condi-

tion from Bickel and Levina (2008a). To derive the asymptotic results for our Network Guided

Thresholding estimator Σ̂T
L̂
= D̂TL̂,λ

(
R̂
)
D̂, apart from the common Assumption 1 and As-

sumption 2, the following additional assumptions need to be imposed.

Assumption 3. (a) The function sλ satisfies (i) |sλ (t)− t| ≤ λ, (ii) |sλ (t)| ≤ t, and (iii)

sλ (t) = 0 for |t| ≤ λ;

(b) Suppose L̂ is the estimator of L, we assume

P

(
max
1≤i≤N

N∑
j=1

I{Lij=1,L̂ij=0} > ϱT c1 (N)

)
= O (κ2 (N, T )) ,

P

(
max
1≤i≤N

N∑
j=1

I{Lij=0,L̂ij=1} > ϱT c1 (N)

)
= O (κ2 (N, T )) ,

P

(
max
1≤i≤N

N∑
j=1

I{Lij=0,L̂ij=0,|r̂ij |>l} > ϱT c1 (N)

)
= O (κ2 (N, T )) ,

for some κ2 (N, T ) = o(1) and ϱT → 0.

18



Remark: Condition (a) is condition (iii) in Rothman et al. (2009), which is a common assump-

tion for thresholding estimation. Condition (b) restricts the number of misclassified elements,

ensuring that the auxiliary network information is of relatively good quality. In other words,

the false-positive (FP) and false-negative (FN) probabilities, defined in Equation 14 below,

cannot be too large.

FP = P
(
L̂ij = 1

∣∣∣Lij = 0
)
, FN = P

(
L̂ij = 0

∣∣∣Lij = 1
)
. (14)

Both FP and FN probabilities represent the quality of the auxiliary information.

P

(
max
1≤i≤N

N∑
j=1

I{L̂ij=0,Lij=0,|r̂ij |>l} > ϱT c1 (N)

)
restricts the joint distribution of r̂ij and L̂ij. This

suggests that, for a small element rij, given L̂ij = 0, the sample correlation coefficient r̂ij is

small with high probability.

We present the asymptotic properties of the Network Guided Thresholding estimator in

Theorem 1.

Theorem 1. Suppose that Assumption 1, Assumption 2 and Assumption 3 hold with l ≤ λ,

then for some constant A which does not depend on (N, T ), we have:

P

(∥∥∥Σ̂T
L̂
−Σ

∥∥∥ > A

(
c0 (N)λ1−q + c1 (N)

√
logN

T
+ c1 (N) ϱT

))
= O

(
1

N2
+ κ1 (N,T ) + κ2 (N,T )

)
,

for some constant A which does not depend on (N, T ), where ∥·∥ represents the operator norm,

and κ1, κ2 are introduced in Assumption 1 and Assumption 3.

Remark: The error term due to the estimation of large elements is c1 (N)
√

logN
T

, and the

effect of small elements appears in c0 (N)λ1−q and the error ϱT is due to the use of L̂ rather

than the true L. From Equation 5, when c0 (N) and c1 (N) are both O(1) or c0(N) ≍ c1(N),

the optimal choice of λ is λT ≍
(
logN
T

)1/2(1−q), which then gives

∥∥∥Σ̂T
L̂
−Σ

∥∥∥ = OP

(
c0 (N)

(√
logN

T
+ ϱT

))
, (15)
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and provided c0 (N)
√

logN
T

→ 0, we get
∥∥∥Σ̂T

L̂
−Σ

∥∥∥ = oP (1). Compared to the standard

thresholding estimator, for example, as in Bickel and Levina (2008a) and Rothman et al. (2009),

which has a convergence rate c0 (N)
(
logN
T

) 1−q
2 , our estimator achieves a faster convergence rate

when the auxiliary information is of good quality. For example, when the estimated indicator

matrix is perfect, i.e., ϱT ≡ 0, we have

∥∥∥Σ̂T
L̂
−Σ

∥∥∥ = OP

(
c0 (N)

√
logN

T

)
,

which approaches zero faster than c0 (N)
(
logN
T

) 1−q
2 .

3.1.2 Network Guided Banding Estimator

We assume that Σu ∈ U2(ε, α, b0,M) defined in Equation 9, which extends the class of bandable

covariance matrix in Bickel and Levina (2008b). Again, we need to make further assumptions

on the auxiliary network information to derive the asymptotic results for our Network Guided

Banding Estimator Σ̂B
Ĉ
= D̂BĈ,k

(
R̂
)
D̂.

Assumption 4. (a) For R and C, there exists b1, s.t. max
1≤i≤N

∑N
j=1 |rij| I{i/∈Scj

k ,j∈Sci
k } < b1 (N),

when k = kT → ∞;4

(b) Suppose that Ĉ is the estimator for C, and there exists a sequence κ3 (N, T ) → 0 when

T → ∞, for some constant A which does not depend on (N, T ),

P

1

k

N∑
j=1

I{
j∈S

ci
k ,j /∈S

ĉi
k

} > A

√
logN

T

 = O (κ3 (N,T )) , P

1

k

N∑
j=1

I{
i∈S

cj
k ,i/∈S

ĉj
k

} > A

√
logN

T

 = O (κ3 (N,T )) .

Remark: Our Relative Importance Matrix C may not imply a symmetric neighbor network,

i.e., i ∈ S
cj
k does not indicate j ∈ Sci

k . In our procedure, we retain those rij when i ∈ S
ĉj
k and j ∈

S ĉi
k while smoothing out other rij. Then asymmetry cases like |rij| I{i/∈Scj

k ,j∈Sci
k } will contribute

to the error, and we need the sum of these cases to be bounded by b1 (N). Condition (a) restricts

the degree of asymmetry; alternatively speaking, most of the asymmetric terms need to be small.

4 Note that if kT = N , we have
∑N

j=1 |rij | I{i/∈S
cj
k ,j∈S

ci
k } ≡ 0.
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Condition (b) assumes that the number of misclassified cases for large elements is bounded by

O

(
k
√

logN
T

)
, which puts restrictions on the false negative error, i.e., P

(
j /∈ S ĉi

k

∣∣∣ j ∈ Sci
k

)
.

It is noteworthy that, unlike the additional restriction on errors caused by small elements

in Assumption 3, the errors of non-neighboring elements for banding decay exponentially by

well-chosen k in class U2. Therefore, the false positive error P
(
j ∈ S ĉi

k

∣∣∣ j /∈ Sci
k

)
is controlled

implicitly.

Theorem 2. Suppose that Assumption 1, Assumption 2, Assumption 4 hold and k = kT → ∞.

Then,

P

(∥∥∥Σ̂B
Ĉ
−Σ

∥∥∥ > A

(
k

√
logN

T
+ b0 (N) k−α + b1 (N)

))
= O

(
1

N2
+ κ1 (N, T ) + κ3 (N, T )

)
,

for some constant A which does not depend on (N, T ), where ∥·∥ represents the operator norm,

and κ1, κ3 are introduced in Assumption 1 and Assumption 4.

Remark: In the error term, the first two parts k
√

logN
T

+ b0 (N) k−α are the same as Bickel

and Levina (2008a), while b1 (N) is due to the “asymmetry” introduced in Assumption 4.

Additionally, the error caused by using the estimated Relative Importance Matrix Ĉ is bounded

by O

(√
logN
T

)
(details can be found in the proof of Theorem 2), thus dominated by the

first component. Bickel and Levina (2008a) suggests an optimal choice of k, which is k ≍(
logN
T

)−1/2(α+1), then we get

∥∥∥Σ̂B
Ĉ
−Σ

∥∥∥ = OP

(
(1 + b0 (N))

(
logN

T

) α
2(α+1)

+ b1 (N)

)
. (16)

If matrix C implies a network of symmetric neighbors (i ∈ S
cj
k ⇔ j ∈ Sci

k ), then our bound in

Equation 16 becomes OP

(
(1 + b0 (N))

(
logN
T

) α
2(α+1)

)
, which matches the result in Bickel and

Levina (2008a). Therefore, provided b0 (N)
(
logN
T

) α
2(α+1) = o (1) and b1 (N) = o (1), one easily

obtains
∥∥∥Σ̂B

Ĉ
−Σ

∥∥∥ = oP (1).
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3.1.3 Convergence of Σ̂y

Given the factor structure, once we obtain Σ̂u, the feasible estimator for Σy is

Σ̂y = B̂Σ̂fB̂
⊺ + Σ̂u,

where B̂ is obtained by OLS estimation. We then follow the framework of Fan et al. (2011) to

derive the asymptotic results for Σ̂y. To this end, they consider the entropy loss norm,5 defined

as ∥∥∥Σ̂y −Σy

∥∥∥
E
=

(
1

N
tr

{(
Σ̂yΣ

−1
y − JN×N

)2})1/2

, (17)

which also equals N− 1
2

∥∥∥Σ− 1
2

y

(
Σ̂y −Σy

)
Σ

− 1
2

y

∥∥∥
F

.

Corollary 1. Under Assumption 1, Assumption 2, then (i) When Assumption 3 holds

and our Network Guided Thresholding estimator Σ̂T
L̂

attains the best convergence rate

c0 (N)

(√
logN
T

+ ϱT

)
, we have

P

(∥∥∥Σ̂y −Σy

∥∥∥
E
> A

(
K

√
N logN

T
+
√
K

√
logN

T
+

c0 (N)√
N

(√
logN

T
+ ϱT

)))
= O

(
1

N2
+ κ1,2

)
,

where κ1,2 := κ1 (N, T ) + κ2 (N, T );

(ii) When Assumption 4 holds and our Network Guided Banding estimator Σ̂B
Ĉ

attains the best

convergence rate (1 + b0 (N))
(
logN
T

) α
2(α+1) + b1 (N), we have

P

(∥∥∥Σ̂y −Σy

∥∥∥
E
> A

(
K

√
N logN

T
+
√
K

√
logN

T
+

(1 + b0 (N))√
N

(
logN

T

) α
2(α+1)

+
b1 (N)√

N

))
= O

(
1

N2
+ κ1,3

)
,

where κ1,3 := κ1 (N, T ) + κ3 (N, T ).

For both estimators, when K
√
N logN

T
→ 0, we have

∥∥∥Σ̂y −Σy

∥∥∥
E
= oP (1). This condition

also reduces to
√
N logN = o (T ) in the case where K is finite.

5 Fan et al. (2012) provided an upper bound for
∥∥∥Σ̂y −Σy

∥∥∥
F

, but for this upper bound to go to zero,

N2 < T is required, making
∥∥∥Σ̂y −Σy

∥∥∥
F

or
∥∥∥Σ̂y −Σy

∥∥∥ unsuitable as a criterion here.
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3.2 Global Minimum Variance Portfolios

To evaluate the performance of the covariance matrix estimation, we consider constructing the

Global Minimum Variance (GMV) portfolio. It is notoriously hard to estimate both the first

and second moments of asset returns through past observations, which motivates us to use the

GMV portfolio as a playground to test our methodology. Compared with the mean-variance

optimal portfolio as in Markowitz (1952), the GMV portfolio avoids the estimation error of

the expectation of asset returns, which can better reflect the performance of covariance matrix

estimators.

Under mild assumptions, the portfolio weights for the GMV portfolio are:

ωGMV =
Σ−1

y 1

1⊺Σ−1
y 1

,

where ω is N × 1 vector of portfolio weights, with 1 a conforming vector of ones and Σ

the covariance matrix of assets returns yt. Given the factor structure of assets returns in

Equation 11, we have Cov(yt,yt) = Σy = BΣfB
⊺ +Σu. The covariance from common factors

are B̂Σ̂fB̂
⊺ as in Equation 13. Then, with the help of auxiliary network information, we

can estimate Σu using our Network-Guided approach. After obtaining Σ̂T
u,L̂

or Σ̂uB
u,Ĉ

, we can

construct Σ̂y = B̂Σ̂fB̂
⊺ + Σ̂T

u,L̂
or Σ̂y = B̂Σ̂fB̂

⊺ + Σ̂B
u,Ĉ

and derive the estimated weights

ω̂ =
Σ̂−1

y 1

1⊺Σ̂−1
y 1

.

3.3 Positive Definiteness of Σ̂y

To ensure the positive definiteness of Σ̂y, we borrow the modification method from Chen et al.

(2019). Specifically, for an estimator Σ̂ of a N × N positive definite population covariance

matrix Σ, let ρ̂1 ≥ ρ̂2 ≥ · · · ≥ ρ̂N be the eigenvalues of estimator Σ̂. If ρ̂N ≤ 0, indicating that

Σ̂ is not positive definite, one can follow Chen and Leng (2016) to modify it by constructing

Σ̂M0 = Σ̂+ (mT − ρ̂N) · JN×N , (18)
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where JN×N is the N×N identity matrix and mT > 0 is a tuning parameter. This modification

ensures that the smallest eigenvalue is positive, making Σ̂M0 invertible. Chen et al. (2019)

further augment Equation 18 by defining

Σ̂M = Σ̂ · 1{ρ̂N>0} + Σ̂M0 · 1{ρ̂N≤0} = Σ̂+ (mT − ρ̂N) · JN×N · 1{ρ̂N≤0}, (19)

which ensures that Σ̂ is retained when it is already positive definite, while Σ̂M0 is used when

non-positive eigenvalues appear.

Now, we apply the Sherman-Morrison-Woodbury formula to Σ̂y and obtain

Σ̂−1
y = Σ̂−1

u − Σ̂−1
u B̂

(
Σ̂−1

f + B̂⊺Σ̂−1
u B̂

)
B̂⊺Σ̂−1

u ,

where Σ̂f is naturally invertible in a (finite) factor structure while Σ̂−1
u may not be well-defined.

We modify Σ̂u using Equation 19. However, since

∥∥∥Σ̂uM −Σu

∥∥∥ ≤
∥∥∥Σ̂u −Σu

∥∥∥+ (mT − ρ̂N) ≤ OP

(∥∥∥Σ̂u −Σu

∥∥∥)+mT + |ρ̂N | ,

when ρ̂N ≤ 0, Weyl’s inequality gives

|ρ̂N | ≤ |ρ̂N − ρmin (Σu)| ≤
∥∥∥Σ̂u −Σu

∥∥∥ ,
leading to

∥∥∥Σ̂uM −Σu

∥∥∥ ≤ OP

(∥∥∥Σ̂u −Σu

∥∥∥) + mT . Thus, the tuning parameter should ap-

proach zero faster than the convergence rate of Σ̂u, ensuring that the modified version Σ̂uM

converges to Σu at the same rate as Σ̂u. Specifically, mT should go to 0 faster than

∥∥∥Σ̂u −Σu

∥∥∥ =


OP

(
c0 (N)λ1−q + c1 (N)

(√
logN
T

+ ϱT

))
, for thresholding,

OP

(
k
√

logN
T

+ b0 (N) k−α + b1 (N)

)
, for banding.
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4 Simulation

4.1 True Covariance Matrix

Similarly to Cai and Liu (2011), we consider two types of sparse covariance matrices in the

simulations to investigate the numerical properties of our proposed estimators.

• Setup 1 (banded matrix with ordering): Σ = diag{A1, A2}, where A1 = (aij)N
2
×N

2
,

aij =
(
1− |i−j|

10

)+
, A2 = 4JN

2
×N

2
. A1 is a bandable sparse covariance matrix, and A2 is

the identity matrix multiplied by 4.

• Setup 2 (sparse matrix without ordering): Σ = diag{A1, A2}, where A2 = 4JN
2
×N

2
,

A1 = B + ϵJN
2
×N

2
, B = (bij)N

2
×N

2
, whose elements independently follow:

bij =



Ber
(
20
N

)
, for i < j,

1, for i = j,

bji, for i > j.

(20)

Ber (x) is a Bernoulli random variable that takes the value 1 with probability x and the

value 0 with probability 1 − x, and ϵ = max{−ρmin(B), 0} + 0.01 to ensure that A1 is

positive definite.

4.2 Auxiliary Network Information

In the simulation, we fix the true Location Indicator Matrix L and the Relative Importance

Matrix C, and generate their estimates, i.e., L̂ and Ĉ. The qualities of these estimates are

tuned by some hyperparameters:

1. Network Guided Thresholding. We fix the Observation Level parameter l = 0.2,

which means Lij = 1 if and only if |rij| > 0.2.
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(a) Setup 1 (b) Setup 2

Figure 1: Typical heatmaps of two banded and sparse models

False Positive error ζ: Conditional on Lij = 0, the probability of L̂ij = 1.

False Negative error 1− p: Conditional on Lij = 1, the probability of L̂ij = 0.

2. Network Guided Banding.

Accuracy Rate η: Conditional on j ∈ Sci
k , the probability of j ∈ S ĉi

k .

Table 1 lists the descriptions of these hyperparameters and the ranges of values that they

take in the numerical experiment. The estimate L̂, derived from auxiliary information in the

real world, is typically sparse, meaning that the number of elements with L̂ij = 1 is limited.

Therefore, it is reasonable to set small values for ζ (e.g., 0.1 and 0) in our simulation setup.

Table 1: Hyperparameters and Auxiliary Network Information Quality.

Hyperparameters
Auxiliary Information Quality

Very Low Low High Perfect

(p, ζ) (0.3, 0.1) (0.6, 0.1) (0.9, 0.1) (1.0, 0.0)

η 0.3 0.6 0.9 1.0
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4.3 Numerical Results

To better match the real asset return data in our empirical work, we generate asset returns using

the CH-4 factor model proposed by Liu et al. (2019), which consists of four factors: Market,

Value-Minus-Growth, Small-Minus-Big and Pessimistic-Minus-Optimistic.6 We first use weekly

return data for all listed stocks and CH-4 factor data from 2000 to 2021 to fit the CH-4 model

for each stock and then collect the factor loading coefficients. Doing so for all stocks provides

the mean and standard deviation for each loading parameter, as well as the covariance matrix

for de-factored idiosyncratic returns.

To be precise, from the estimates, we have β1i ∼ N (0.7013, 0.19612), β2i ∼

N (−0.1582, 0.20552), β3i ∼ N (−0.1200, 0.21822), β4i ∼ N (−0.0050, 0.22452), and ut ∼

N (0,Σu). To match the data used in the empirical study, we independently draw

β1i, β2i, β3i, β4i, and ut from the aforementioned distributions. We sample factor returns from

normal distributions, with means and covariance matrices set to match the historical data from

2000 to 2021, as shown in Table 2. Setting β0 to 0, we generate the asset return data for

N = 100, 300, 500 and T = 300 using the following factor model:

yt = β0 + β1fMKT,t + β2fVMG,t + β3fSMB,t + β4fPMO,t + ut. (21)

Table 2: Descriptive Statistics of Weekly CH-4 Factor Data from 2000 to 2021

Descriptive Statistics Correlation

Count Mean Std. Skew. Kurt. MKT VMG SMB PMO

MKT 1119 0.1474% 3.3799% -0.1019 2.5177 1.000 -0.237 0.159 -0.283

VMG 1119 0.2774% 1.7354% 1.0481 6.9085 -0.237 1.000 -0.637 0.215

SMB 1119 0.1189% 2.0311% -0.5200 5.0999 0.159 -0.637 1.000 -0.137

PMO 1119 0.1887% 1.5882% 0.5986 8.1812 -0.283 0.215 -0.137 1.000

Using the simulated data, we estimate the CH-4 factor model and collect residuals ût,

6 The CH-4 factor model is found to suit the Chinese stock market well and outperforms the Fama-French

5-factor model.
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and then we employ various methods to estimate its covariance. Each scenario, specified by

(N, T, p, ζ) or (N, T, η), is repeated 100 times. Our examination centers on the finite sample

performance of both the Network Guided Thresholding Estimator and the Network Guided

Banding Estimator, compared with a collection of purely statistical approaches: the Sam-

ple Covariance Estimator, Soft Thresholding Estimator, Hard Thresholding Estimator, Linear

Shrinkage Estimator and Nonlinear Shrinkage Estimator.7 The results, evaluated using both

the Frobenius norm and the operator norm, are presented in Table 3, illustrating the compar-

ative performances of the various estimation methods.

Panel A in Table 3 shows the results for our setup 1, where the true covariance matrix

is banded with order. Here, we observe that both Network-Guided estimators surpass their

counterparts, provided the auxiliary network information is of reasonable quality. For the

Network Guided Thresholding Estimator, except in the scenario where N < T with (p, ζ) =

(0.3, 0.1), indicating poor auxiliary information, it outperforms the sample covariance estimator,

soft thresholding estimator, hard thresholding estimator, and linear shrinkage estimator in all

combinations (p, ζ,N). Nonetheless, to outperform the nonlinear shrinkage estimator, the

quality of the information needs to be comparably higher. As expected, the FP error ζ and FN

error 1− p affect the performance of the Network Guided Thresholding Estimator. In an ideal

scenario where (p, ζ) = (1.0, 0.0), we have L̂ = L.

When examining the Network Guided Banding Estimator, it exhibits smaller norms than

all other purely statistical methods, as long as the accuracy rate parameter η is not excessively

low. For example, with η = 0.6, a moderate accuracy rate, the Network Guided Banding

Estimator demonstrates superiority for most (N, T ) combinations, particularly when N ≥

T . With comparable information quality, the Network Guided Banding Estimator typically

outshines the Network Guided Thresholding Estimator, aligning with theoretical expectations.

However, our objective is not to compare the two Network-Guided estimators against each

7 Numerical performance is assessed through the comparison of both the Frobenius norm and the operator

norm, i.e.,
∥∥∥Σ̂−Σ

∥∥∥
F

and
∥∥∥Σ̂−Σ

∥∥∥.

28



other, as this would not be a fair comparison given that each approach is designed for different

types of auxiliary network information.

Panel B is devoted to the scenario where the true covariance matrix is a sparse matrix with-

out order (setup 2). In this context, both Network-Guided estimators continue to outperform

in the competition, as long as the auxiliary network information is of decent quality. Note

that the traditional banding method cannot be applied to estimate covariance matrices from

setup 2. However, our Network Guided Banding Estimator is adaptable to a broader spectrum

of bandable matrices and shows good performance in this setting, provided that the accuracy

rate parameter η is not unduly low. For example, with η = 0.6, the Network Guided Banding

Estimator surpasses other methods across all (N, T ) combinations. Similarly to the previous

setup, the Network Guided Thresholding Estimator exhibits strong performance, particularly

when the FP errors are small.

In summary, our simulation exercise highlights the promising numerical properties of the

proposed Network-Guided estimators. Both estimators generally outperform traditional purely

statistical approaches, provided that the auxiliary information is of decent quality.
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Table 3: Simulation Results. We compare our methods with some benchmarks, including Sample Covariance matrix (Sample), Soft Thresholding (S-Thres.),

Hard Thresholding (H-Thres.), Linear Shrinkage (L-Shrin.) and Non-linear Shrinkage (N-Shrin.), in terms of Frobenius norm and the operator norm. Note that Python

package nonlinshrink only works when T > N . For each method, we perform 100 simulations and report the mean and standard deviation. Results are displayed for

different values of N = 100, 300, 500, with T fixed at 300.

Setting
Network Guided Thresholding Network Guided Banding Benchmarks

(0.3, 0.1) (0.6, 0.1) (0.9, 0.1) (1.0, 0.0) η = 0.3 η = 0.6 η = 0.9 η = 1.0 Sample S-Thres. H-Thres. L-Shrin. N-Shrin.

• Panel A: Setup 1, banded matrix with ordering

N = 100

∥·∥F
14.77 11.46 7.14 3.59 13.97 10.74 5.91 3.04 14.47 16.56 16.43 12.25 7.56
(0.07) (0.10) (0.17) (0.25) (0.26) (0.39) (0.48) (0.32) (0.32) (0.03) (0.76) (0.19) (0.30)

∥·∥
6.83 4.45 2.05 1.34 6.44 4.23 2.02 1.28 4.47 8.74 8.66 3.74 3.59

(0.17) (0.29) (0.31) (0.31) (0.28) (0.37) (0.31) (0.36) (0.40) (0.04) (0.48) (0.32) (0.39)

N = 300

∥·∥F
28.47 23.00 17.14 6.44 24.65 18.94 10.59 5.40 43.25 29.26 28.86 29.11
(0.13) (0.16) (0.22) (0.24) (0.28) (0.36) (0.46) (0.30) (0.37) (0.04) (1.81) (0.11)

∥·∥
7.14 4.65 2.59 1.65 6.81 4.58 2.37 1.58 9.13 8.98 8.85 5.63

(0.10) (0.16) (0.21) (0.25) (0.17) (0.24) (0.26) (0.25) (0.41) (0.02) (0.60) (0.16)

N = 500

∥·∥F
39.34 33.66 27.11 8.33 31.96 24.63 13.68 6.96 71.88 37.91 41.10 41.44
(0.13) (0.16) (0.20) (0.21) (0.32) (0.38) (0.44) (0.27) (0.42) (0.03) (12.41) (0.10)

∥·∥
7.16 4.94 2.95 1.78 6.88 4.69 2.46 1.71 12.72 9.01 9.19 6.30

(0.09) (0.13) (0.13) (0.23) (0.17) (0.23) (0.26) (0.27) (0.38) (0.02) (1.63) (0.10)

• Panel B: Setup 2, sparse matrix without ordering

N = 100

∥·∥F
19.69 16.36 12.25 10.93 17.62 14.17 9.56 7.39 25.87 20.49 20.42 16.29 15.25
(0.13) (0.17) (0.26) (0.30) (0.32) (0.49) (0.45) (0.34) (0.44) (0.05) (0.67) (0.25) (0.30)

∥·∥
7.58 5.14 3.13 2.73 7.26 4.87 2.88 2.26 7.02 9.79 9.72 6.83 5.73

(0.24) (0.30) (0.19) (0.23) (0.30) (0.39) (0.22) (0.24) (0.50) (0.07) (0.59) (0.58) (0.78)

N = 300

∥·∥F
39.84 35.57 31.27 14.22 30.20 24.66 17.39 14.22 83.04 34.86 34.86 33.86
(0.20) (0.26) (0.30) (0.33) (0.29) (0.40) (0.46) (0.33) (0.50) (0.06) (0.06) (0.10)

∥·∥
7.86 5.73 4.29 2.71 7.39 5.06 3.22 2.71 15.27 9.86 9.86 9.09

(0.19) (0.20) (0.14) (0.22) (0.20) (0.22) (0.17) (0.22) (0.54) (0.05) (0.05) (0.23)

N = 500

∥·∥F
58.38 53.24 48.14 17.96 38.87 31.53 22.21 17.96 136.36 44.96 44.96 44.72
(0.27) (0.28) (0.33) (0.37) (0.29) (0.40) (0.46) (0.37) (0.63) (0.05) (0.05) (0.07)

∥·∥
8.25 6.02 4.91 2.67 7.30 4.95 3.19 2.67 21.20 9.73 9.73 9.43

(0.17) (0.15) (0.13) (0.22) (0.14) (0.18) (0.16) (0.22) (0.47) (0.04) (0.04) (0.15)
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5 Empirical Study

5.1 Data

5.1.1 Assets Returns

Stocks in our sample are constituent stocks of three well-known indices in China in 2021,

namely HS300 (000300.SH), CSI500 (000905.SH), and CSI800 (000906.SH), which consist of

approximately 300, 500, and 800 stocks, respectively. The daily returns of these stocks were

collected from the RESSET database, covering the period from 2006 to 2021, with ST stocks

excluded.8

5.1.2 News Co-mention Linkage Data

We analyzed millions of articles from the Financial Text Intelligent Analysis Platform of RES-

SET and the Juyuan Database, spanning from 2006 to 2021. We selected articles that men-

tioned at least one publicly traded company in China’s A-share market, totaling 1,138,247 news

pieces.

Following the approach of Ge et al. (2023), we identify news-implied links based on co-

mentions within the same news article. We propose four methods to identify linkages based on

different types of co-mentions, namely one2one_passage, all_passage, one2one_sentence

and all_sentence approaches. In Table 4, we summarize the differences between these link

identification strategies:

At time t, we use the latest τ0 days as the identification window.9 For each of the four link

identification strategies, we count the number of co-mentions Mij for each stock pair (i, j), and

8 In this article, we assume that the observed price or observed return is equal to the efficient price or

efficient return. However, when the observed price Pt is the sum of efficient price P ∗
t and microstructure noise

et, i.e., Pt = P ∗
t +et, as highlighted by Li and Linton (2022), the microstructure noise component is not directly

observed because it is obscured by the efficient price. In that case, the covariance matrix of the efficient price

series is equal to the long-run covariance matrix of the observed returns.
9 Empirically, we choose τ0 to be 21 (1 month) or 252 (12 months) to examine the performance of the link

identification strategy under short and long identification windows.
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Table 4: News Co-mention Types and Link Identification

Firms Co-mentioned

in the same passage in the same sentence

if more than two firms are co-mentioned all_passage all_sentence

if and only if two firms are co-mentioned one2one_passage one2one_sentence

then we construct the co-mention matrix M = (Mij) for i, j = 1, 2, . . . , N .

5.1.3 Analyst Coverage Linkage

In parallel, we explore stock linkages based on analyst coverage, denoted as Analyst. This

approach is supported by the literature suggesting that shared analyst coverage can indicate

fundamental connections between companies, reflecting similarities across various dimensions

(see Ali and Hirshleifer (2020), Israelsen (2016), and Kaustia and Rantala (2013)). We used

data from the Chinese Research Data Services Platform (CNRDS), covering analyst reports

from January 2005 to December 2020. After data cleaning, we identified 530,696 unique analyst

reports to trace connections based on shared coverage. Starting from 2006, at time t, we use the

most recent one-year window for link identification. For each pair of stocks (i, j), we count the

number of co-coverages Mij during the identification window to build the analyst co-coverage

linkage matrix M = (Mij) for i, j = 1, 2, . . . , N .

5.1.4 Industry-based Linkage

Stocks within the same sector or industry often co-move beyond exposure to common risk fac-

tors. Based on this, we examine linkages formed based on industry classifications, denoted as

Industry. We analyzed three major industry classification systems in China: CSRC, CITIC,

and Shenwan, updating annually using the RESSET database. Our primary focus is the Shen-

wan primary classification, which is recognized as the leading system within China’s financial

industry.
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5.1.5 Summary Statistics of All Types of Auxiliary Network

We report the summary statistics of these different networks in Table 5. Under sentence_1,

each focal firm has 16 peer firms on average, fewer than 29 peers from article_1. This aligns

with our expectations, as the same sentence strategy removes potential noise links present in

the same article strategy, resulting in fewer identified links. Additionally, the number of peer

firms identified naturally increases with the length of the identification window. For other

linkage types, we generally observe a higher number of links, with each sample stock having

more linked stocks on average.

Table 5: Networks Summary Statistics. The sample stocks include all listed stocks on the main board

of the Shanghai Stock Exchange, Shenzhen Stock Exchange, and the Growth Enterprise Market (GEM). ST

shares are excluded.

Link Type Variables Mean Std. Min. Median Max.

all_sentence_1
# Stocks 1332 293 903 1234 2223

# Linked Stocks 16 32 1 5 454

all_sentence_12
# Stocks 1750 233 1355 1742 2704

# Linked Stocks 23 42 1 8 631

all_passage_1
# Stocks 1976 229 1478 1952 2816

# Linked Stocks 29 51 1 10 757

all_passage_12
# Stocks 2122 278 1569 2121 2891

# Linked Stocks 35 59 1 12 867

analyst
# Stocks 1326 348 476 1429 1872

# Linked Stocks 98 84 1 75 609

industry
# Stocks 2336 795 1048 2313 3893

# Linked Stocks 130 83 2 110 364

5.2 Methodology

We use the Global Minimum Variance (GMV) portfolio as a testing ground to evaluate dif-

ferent covariance matrix estimation techniques. We are particularly interested in whether the
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GMV portfolio, constructed with the help of auxiliary network information, outperforms other

methods. This subsection presents the procedures for applying our proposed Network-Guided

estimators to the stock return covariance matrix, followed by an out-of-sample comparison.

5.2.1 CH-4 Factor Model

We first de-factor the stock returns using observable factors, adopting the CH-4 factors model

from Liu et al. (2019):

yt = β0 + β1fMKT,t + β2fVMG,t + β3fSMB,t + β4fPMO,t + ut

= β0 +Bft + ut,

(22)

where the time series of the four factors can be obtained from the author’s website. The

estimator of Σy = Cov (yt,yt) is given by

Σ̂y = B̂Σ̂fB̂
⊺ + Σ̂u, (23)

where the factor loading matrix B̂ is obtained using OLS. Our goal is to estimate the covariance

matrix of residuals Σu.

5.2.2 The Estimation of [Lij]N×N and [Cij]N×N

Depending on the nature of the auxiliary network information, we can choose which network-

guided method to apply. In general, if the auxiliary network dataset provides unweighted

linkage information, that is, simply indicating whether a pair of stocks is linked without quan-

tifying the strength of the connection, then we can apply the Network Guided Thresholding

method but not the Network Guided Banding method. On the other hand, if the auxiliary

network dataset provides weighted linkage information, revealing the relative importance of

neighbors for each node, then we can apply both the Network Guided Thresholding and the

Network Guided Banding methods.
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The news co-mention auxiliary network implies weighted linkage information and can there-

fore be applied to both Network Guided Thresholding and Network Guided Banding estimation.

To apply the Network Guided Thresholding, we first estimate the Location Indicator Matrix

L. Since L is a zero-one matrix, we tune a threshold parameter m, setting L̂ij = 1 only

if i and j are co-mentioned more than m times in a given identification window. That is,

L̂ij = 1{Mij ≥ m}, where the tuning parameter m is chosen by the in-sample cross-validation.

To apply the Network Guided Banding Estimation, we construct an estimate of the Relative

Importance Matrix C from the news co-mention matrix M , where a typical entry 0 ≤Mij <∞

provides integer counts of the times of co-mentions. For each row Mi of M , we set ĉij to be the

rank of Mij within that row, and the number of neighbors k of each asset is also determined by

the in-sample cross-validation. Given the estimates of L and C, the network-guided procedure

introduced in Section 2 can be applied. In our empirical work, we select the value of m and k

that minimize the variance of the portfolio in the training sample.

The analyst co-coverage linkage network has the same properties as the news co-

mention auxiliary network. Therefore, all procedures are identical to those described

above. In contrast, the industry-based linkage network is unweighted, where Mij =

1{i and j are in the same industry}. Given the nature of the industry network, we cannot

learn relative importance information from it, and thus cannot apply our Network Guided

Banding method. However, by setting L̂ij = Mij, we can still apply the Network Guided

Thresholding method.

5.2.3 Comparing the Out-of-sample Portfolios

As discussed in Engle et al. (2019) and Chen et al. (2019), constructing a global minimum

variance (GMV) portfolio is an effective method to evaluate the performance of covariance

matrix estimators. Unlike the optimal mean-variance (MV) portfolio, the GMV portfolio avoids

the need to estimate asset mean returns, which can introduce considerable noise.

In this part, we apply the proposed method to a portfolio management problem. Specifically,
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we compare the performance of GMV portfolios as outlined in Ledoit and Wolf (2004). The

theoretical weights for a GMV portfolio are given by

wGMV =
Σ−1

y 1

1⊺Σ−1
y 1

,

where Σy is the covariance matrix of asset returns, and 1 is the conforming vector of ones.

The estimator of the return covariance matrix can be decomposed as Σ̂y = B̂Σ̂fB̂
⊺ + Σ̂u

under the factor structure. The factor component can be easily estimated using the CH-4 factor

model. Our goal is to demonstrate that the proposed method can more accurately estimate

Σu and thus improve the performance of the GMV portfolio. Using a rolling window approach

starting in 2012, we train the model with one year of data and use the in-sample results for a

one-month test. This procedure is repeated until the end of 2021.

For robustness check, we also consider the maximum return portfolio for any given variance

level σ2
0 and the minimal variance portfolio for any given expected return level µ0. Recall the

construction of the classical optimal portfolio. For example, given a return constraint µ0, we

have the minimization problem:

minw⊺Σyw s.t. w⊺µ ≥ µ0.

µ = E (yt), and the weight is given by

w (µ0) =
1

|Ψ|
·
[
(ψ22 − ψ12µ0)Σ

−1
y 1+ (ψ11µ0 − ψ12)Σ

−1
y µ

]
,

where the matrix Ψ is defined as

Ψ =

ψ11 ψ12

ψ21 ψ22

 =

1⊺Σ−1
y 1 1⊺Σ−1

y µ

µ⊺Σ−1
y 1 µ⊺Σ−1

y µ

 .

Details and proofs can be found in Chapter 1.6 of Linton (2019). Given the factor structure of
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asset returns, we have µ̂ = β̂0 + B̂f̄ and Σ̂y = B̂Σ̂fB̂
⊺ + Σ̂u. Plug in the optimal weight, the

minimal variance given µ0 is

σ2
0 = w (µ0)

⊺ Σw (µ0) =
1

|Ψ|
(
ψ11µ

2
0 − 2ψ12µ0 + ψ22

)
,

which also gives the mean-variance efficient frontier set {(σ0, µ0) , µ0 ≥ 0}. Starting from the

maximization problem for any given σ2
0 leads to the same efficient frontier. However, note

that the efficient frontier is in-sample. When we set a fixed in-sample σ0 or µ0, the out-of-

sample portfolio may yield different values for standard deviation and mean return, resulting

in an out-of-sample efficient frontier. Similarly to the GMV portfolio, we select tuning param-

eters through in-sample training and then construct the out-of-sample efficient frontiers under

different models.

Importantly, although most of the estimated covariance matrices are positive definite, we

modify any non-positive definite covariance matrices Σ̂u using the method outlined in Equa-

tion 19.

5.3 Empirical Results

5.3.1 Comparing GMV Portfolios

Table 6 reports the out-of-sample volatility (measured by standard deviation) of GMV portfolios

constructed using different methods and stock samples, including the constituent stocks of the

HS300, CSI500, and CSI800 indices. We consider the following benchmark models:

1. Sample: Use the sample covariance matrix of Σ̂u with a positive definite correction if

necessary, and compute B̂Σ̂fB̂
⊺ + Σ̂u.

2. Linear Shrinkage: Operate linear shrinkage of Ledoit and Wolf (2004) on Σ̂u with

positive definite correction if necessary, and compute B̂Σ̂fB̂
⊺ + Σ̂u

3. Factor Only: Use B̂Σ̂fB̂
⊺ + diag(σ̂2

1, · · · , σ̂2
N) as Σ̂y.
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4. Equal Weights: Assign equal weights 1
N

to each of the N assets for the out-of-sample

GMV portfolios.

The overall results are shown in Panel A, where “Best Thresholding” and “Best Banding”

represent the best-performing portfolios utilizing different types of auxiliary information. Fur-

ther details are provided in Panel B (Network Guided Thresholding) and Panel C (Network

Guided Banding), respectively.

Results for the benchmark models are presented in Panel A. The “Factors Only” approach

consistently outperforms the “Sample” method across all indices. Estimating the covariance

matrix using a factor model reduces the estimation error inherent in the sample covariance

matrix, thereby mitigating the impact of individual asset noise. The “Sample” method can

exhibit high estimation error due to the large number of parameters, with noise potentially

leading to poor out-of-sample performance. Additionally, the “Linear Shrinkage” method offers

a competitive, and in some cases superior, reduction in standard deviation compared to “Factors

Only”, particularly for the CSI500 index. This underscores the potential of shrinkage methods

in enhancing portfolio allocation.

For the Network Guided Thresholding (Panel B), the results exhibit a varied performance

landscape. Incorporating analyst and industry network information, the Network Guided

Thresholding method does not demonstrate superior performance compared to the “Factors

Only” method. However, news-implied linkages generally prove more effective in enhancing co-

variance matrix estimation, with reduced out-of-sample volatility in most cases. Turning to the

results of the guided Banding approach (Panel C), news-implied networks again show greater

effectiveness than other auxiliary network information in improving covariance matrix estima-

tion. Note that industry provides only unweighted linkage information, making it unsuitable

for Banding.

Combining the results from both Network-Guided estimators, we find that news-based auxil-

iary network information is more effective in identifying linked pairs compared to other sources.
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This finding aligns with the results of Ge et al. (2023). However, we recognize that the best-

performing strategy for identifying news-implied linkages varies across different indices. This

suggests that while auxiliary news-implied network information is valuable, its application

should be tailored to specific market conditions and characteristics due to the complex nature

of financial markets. Future research could explore the mechanisms behind these variations to

further refine the estimation process.
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Table 6: Out-of-sample Standard Deviation of GMV Portfolios. We compare the out-of-sample standard deviations of GMV portfolios constructed using

different covariance matrix estimators, while adopting the factor structure for asset returns. The covariance due to common factors remains the same across all methods,

with variations arising in the estimation of Σu. “Sample” refers to a simple sample estimator of Σu; “Factors Only” refers to setting Σ̂u = diag{σ̂2
1 , · · · , σ̂2

N}; and “Equal

Weights” refers to a portfolio with equal weights for all assets. The out-of-sample standard deviation of the best-performing portfolio for each index is highlighted in

bold.

Index Out-of-sample Standard Deviation of GMV Portfolios Under Different Estimators

• Panel A: Overall
Sample Linear Shrinkage Factors Only Equal Weights Best Thresholding Best Banding

HS300 0.0513 0.0480 0.0440 0.0717 0.0426 0.0445
CSI500 0.0739 0.0703 0.0732 0.0820 0.0683 0.0733
CSI800 0.0593 0.0575 0.0547 0.0769 0.0499 0.0532

• Panel B: Network Guided Thresholding
analyst industry all_passage_1 all_sentence_1 one2one_passage_1 one2one_sentence_12

HS300 0.0507 0.0472 0.0457 0.0457 0.0447 0.0470
CSI500 0.0722 0.0760 0.0685 0.0683 0.0686 0.0684
CSI800 0.0558 0.0604 0.0508 0.0503 0.0505 0.0510

one2one_sentence_1 all_passage_12 all_sentence_12 one2one_passage_12

HS300 0.0448 0.0508 0.0452 0.0426
CSI500 0.0685 0.0756 0.0700 0.0687
CSI800 0.0506 0.0582 0.0499 0.0500

• Panel C: Network Guided Banding
analyst industry all_passage_1 all_sentence_1 one2one_passage_1 one2one_sentence_12

HS300 0.0460 0.0483 0.0469 0.0445 0.0489
CSI500 0.0742 0.0756 0.0733 0.0744 0.0768
CSI800 0.0598 0.0558 0.0556 0.0532 0.0537

one2one_sentence_1 all_passage_12 all_sentence_12 one2one_passage_12

HS300 0.0467 0.0488 0.0504 0.0513
CSI500 0.0737 0.0741 0.0735 0.0765
CSI800 0.0538 0.0605 0.0588 0.0547
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5.3.2 Other Mean-Variance Portfolios

We also compare the performance of various optimal portfolios under different covariance matrix

estimations, focusing on the CSI500 index for illustrative purposes. We calculate the out-of-

sample efficient frontiers using different methods, as shown in Figure 2, with all returns and

volatilities annualized.

Figure 2: Out-of-sample Efficient Frontiers. For the two Network-Guided methods, we show the

efficient frontiers using the best auxiliary information. “Thresholding” refers to Network Guided Thresholding,

while “Banding” refers to Network Guided Banding.

From Figure 2, we see that the Network Guided Thresholding method achieves minimal

variance, which aligns with the results in Table 6. Considering out-of-sample mean returns,

the portfolio constructed using Network Guided Banding outperforms both Network Guided

Thresholding and all other baseline models. Apart from Thresholding and Banding, only the

“Factor” method generates higher average returns than the “Equal Weights” portfolio for all

volatility levels. Linear Shrinkage generates low mean returns compared with others when

the volatility is small, but produces larger mean returns than the “Factor” method when the

volatility is relatively high. Finally, the sample covariance matrix consistently underperforms

in constructing mean-variance portfolios in our study, highlighting the necessity of improving

the estimation of large covariance matrices.
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Table 7: Portfolios Performance Given Out-of-Sample Standard Deviations. We compare the out-of-sample mean return and Sharpe ratio of the best

portfolio under a given volatility constraint, constructed using different covariance matrix estimators.

Out-sample-sample Statistics
Benchmarks Network Guided

Sample Linear Shrinkage Factors Only Equal Weights Best Thresholding Best Banding

Std. = 26%
Mean 6.11% 9.13% 13.16% 15.02% 19.46%

Sharpe 0.120 0.236 0.391 0.462 0.633

Std. = 27%
Mean 6.44% 9.72% 13.56% 15.38% 19.98%

Sharpe 0.127 0.249 0.391 0.459 0.629

Std. = 28%
Mean 6.66% 10.23% 13.85% 15.70% 20.37%

Sharpe 0.131 0.258 0.388 0.454 0.620

Std. = 28.41%
Mean 6.74% 10.42% 13.96% 11.23% 15.82% 20.51%

Sharpe 0.131 0.261 0.386 0.290 0.451 0.616

Std. = 29%
Mean 6.84% 10.68% 14.10% 15.99% 20.70%

Sharpe 0.132 0.265 0.383 0.448 0.610

Std. = 30%
Mean 7.00% 11.09% 14.32% 16.26% 21.00%

Sharpe 0.133 0.270 0.377 0.442 0.600

Std. = 31%
Mean 7.15% 11.48% 14.52% 16.52% 21.27%

Sharpe 0.134 0.273 0.372 0.436 0.589
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Table 7 reports the out-of-sample portfolio performances for various values of the volatility.

The results are consistent with those in Figure 2. We compare the Sharpe ratios under a given

portfolio volatility, with Network-Guided portfolios exhibiting higher Sharpe ratios than all

benchmark models, and the Network Guided Banding performing the best.

Furthermore, we analyze the maximal Sharpe Ratio portfolios (or Mean-Variance optimal

portfolios) under different models. We search the efficient frontier depicted in Figure 2 to find

the mean-variance optimal results for each model for comparison. Figure 3 plots the back-

test performance over a 10-year out-of-sample window for these portfolios, and the evaluation

statistics are presented in Table 8. Due to the crash of the Chinese stock market in May and

June 2015, no portfolio achieves a Sharpe ratio greater than 1. However, compared to the other

four benchmarks, the Network Guided portfolios perform better over the entire period, espe-

cially the Banding method. In terms of return and standard deviation, the “Factor” method is

close to our Network Guided Thresholding, but it tends to produce a higher maximum draw-

down. The Network Guided Banding portfolio provides the best performance in our backtest,

with the highest return and the lowest maximum drawdown. It is worth noting that a simple

equal-weight portfolio actually performs better than many of the other benchmark methods.

This is not surprising. DeMiguel et al. (2009) documented that the gains from mean-variance

optimal diversification are often more than offset by estimation errors in practice, making a

naive equal-weight strategy more efficient than previously thought.

Table 8: Mean-Variance Optimal Portfolios Performances. This table reports the mean, standard
deviation, Sharpe ratio, and maximum drawdown of mean-variance portfolios constructed using different co-
variance matrix estimation methods. “Thresholding” refers to Network Guided Thresholding, while “Banding”
refers to Network Guided Banding.

Sample Linear Shrinkage Factors Only Equal Weights Thresholding Banding

Mean Return 7.25% 14.71% 13.42% 11.23% 14.68% 19.47%

Std. Dev. 31.77% 41.04% 26.59% 28.41% 25.20% 26.02%

Sharpe Ratio 0.134 0.285 0.392 0.290 0.464 0.633

Max Draw-down 78.24% 91.07% 77.60% 58.90% 72.79% 56.85%

In conclusion, these empirical results validate the utility of incorporating network infor-
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Figure 3: Out-of-sample Mean-Variance Optimal Portfolios. This figure tracks the net value of
mean-variance portfolios constructed using different covariance matrix estimation methods. “Thresholding”
refers to Network Guided Thresholding, while “Banding” refers to Network Guided Banding.

mation into covariance matrix estimation for portfolio optimization. While the factor model

primarily captures the strong cross-sectional dependence among asset returns, auxiliary infor-

mation such as news, as discussed in Ge et al. (2022), helps identify local or weak cross-sectional

dependencies. This is why auxiliary information improves the estimation of Σu, the covariance

matrix of de-factored returns. However, these findings also highlight the complex nature of

financial markets, where the effectiveness of such information can vary across different environ-

ments and conditions. Future research could delve deeper into the mechanisms behind these

variations to further refine the estimation process.

6 Conclusion

In the era of big data, the availability of auxiliary information beyond the observations of

{Xt}Tt=1 offers valuable opportunities to enhance the performance of conventional statistical

and econometric models. Our study provides theoretical results demonstrating that integrat-

ing auxiliary data, when tailored to fit conventional thresholding and banding methods, ex-

hibits improved properties. Both simulation studies and empirical illustrations validate that

the proposed estimators outperform many benchmark models, provided the auxiliary network
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information is of reasonable quality. Therefore, the answer to “should we augment large co-

variance matrix estimation with auxiliary network information?” is a yes; integrating auxiliary

network information of decent quality into conventional covariance matrix estimation methods

is recommended.

In this paper, we focus primarily on the estimation of static covariance matrices. However,

we suggest that a similar approach can be extended to other settings, such as the estima-

tion of large dynamic covariance matrices. For instance, dynamic network information could

be effectively incorporated into the conditioning information set, as discussed in Chen et al.

(2019).
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Appendices

A Proofs

A.1 Proof of Theorem 1

Proof . By triangle inequality, we have
∥∥∥R̂T

L̂
−R

∥∥∥ ≤
∥∥∥R̂T

L̂
−RT

L̂

∥∥∥ + ∥∥∥RT
L̂
−RT

L

∥∥∥ + ∥∥RT
L −R

∥∥.

For the first part, under Assumption 3,
∥∥∥R̂T

L̂
−RT

L̂

∥∥∥ ≤ max
1≤i≤N

N∑
j=1

(
|r̂ij − rij | I{L̂ij=1} + |sλ (r̂ij)− sλ (rij)| I{L̂ij=0}

)

= max
1≤i≤N

N∑
j=1

(
|r̂ij − rij | I{L̂ij=1,Lij=1} + |r̂ij − rij | I{L̂ij=1,Lij=0}

)

+ max
1≤i≤N

N∑
j=1

(
|sλ (r̂ij)− sλ (rij)| I{L̂ij=0,Lij=1} + |sλ (r̂ij)− sλ (rij)| I{L̂ij=0,Lij=0}

)

≤c1(N)max
i,j

|r̂ij − rij |+ 2 max
1≤i≤N

N∑
j=1

(
I{L̂ij=1,Lij=0} + I{L̂ij=0,Lij=1}

)
+ max

1≤i≤N

N∑
j=1

I{L̂ij=0,Lij=0,|r̂ij |>λ}.
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For some constant A > 0, we define

A1,1 =

{
max
i,j

|σ̂ij − σij| > A

√
logN

T

}
∪

{
max
i,j

|σ̂ij − σ̃ij| > A

√
logN

T

}
,

whose probability is shown to be bounded by O
(

1
N2 + κ1 (N, T )

)
in Lemma A.3 of Fan et al.

(2011), with

σ̃ij =
1

T

T∑
t=1

uitujt, σ̂ij =
1

T

T∑
t=1

ûitûjt.

For function g (σij, σii, σjj) =
σij√
σiiσjj

, it is straightforward to show that all the three following

first-order derivatives,

g1 =
1

√
σiiσjj

, g2 =
−σij

2σ
3/2
ii

√
σjj

, g3 =
−σij

2
√
σiiσ

3/2
jj

,

are bounded. Firstly, Equation 4 implies σii ≤ M and σjj ≤ M . Consequently, |σij| ≤ M

is directly from the Cauchy-Schwarz inequality. Furthermore, condition (a) in Assumption 1,

which states ρmin (Σu) > c > 0, suggests that σii and σjj are bounded from below. When Ac
1,1

occurs and T is large enough, σ̂ij and σij can be close sufficiently. Then we have for all i, j,

|σ̂ij| is bounded, and σ̂ii, σ̂jj are also bounded from below. Thus, due to the bounded partial

derivatives of the function g, maxi,j |r̂ij − rij| ≤ O (maxi,j |σ̂ij − σij|). Therefore, under the

event Ac
1 := Ω− (A1,1 ∩ A1,2 ∩ A1,3 ∩ A1,4) where

A1,2 =

{
max
1≤i≤N

N∑
j=1

I{Lij=1,L̂ij=0} > ϱT c1 (N)

}
,

A1,3 =

{
max
1≤i≤N

N∑
j=1

I{Lij=0,L̂ij=1} > ϱT c1 (N)

}
,

A1,4 =

{
max
1≤i≤N

N∑
j=1

I{L̂ij=0,Lij=0,|r̂ij |>l} > ϱT c1 (N)

}
,
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we have, because l ≤ λ,
∥∥∥R̂T

L̂
−RT

L̂

∥∥∥ ≤ c1 (N)max
i,j

|r̂ij − rij |+ 2 max
1≤i≤N

N∑
j=1

(
I{L̂ij=1,Lij=0} + I{L̂ij=0,Lij=1}

)
+ max

1≤i≤N

N∑
j=1

I{L̂ij=0,Lij=0,|r̂ij |>λ}

≤ Ac1 (N)

√
logN

T
+ 2ϱT c1 (N) + max

1≤i≤N

N∑
j=1

I{L̂ij=0,Lij=0,|r̂ij |>l}

≤ A

(
c1 (N)

√
logN

T
+ c1 (N) ϱT

)
,

which yields

P

(∥∥∥R̂T
L̂
−RT

L̂

∥∥∥ > A

(
c1 (N)

√
logN

T
+ c1 (N) ϱT

))
= O

(
1

N2
+ κ1 + κ2

)
(24)

by condition (b) in Assumption 3.

For the second part, we have

∥∥RT
L̂
−RT

L

∥∥ ≤ max
1≤i≤N

N∑
j=1

(
|rij − sλ (rij)| I{L̂ij=1,Lij=0} + |sλ (rij)− rij| I{L̂ij=0,Lij=1}

)
≤ max

1≤i≤N

N∑
j=1

(
2 |rij| I{L̂ij=1,Lij=0} + λI{L̂ij=0,Lij=1}

)
≤ 2l max

1≤i≤N

N∑
j=1

I{L̂ij=1,Lij=0} + λ max
1≤i≤N

N∑
j=1

I{L̂ij=0,Lij=1}.

Next, under the set Ac
1,2 ∩ Ac

1,3,

∥∥RT
L̂
−RT

L

∥∥ ≤ 2l max
1≤i≤N

N∑
j=1

I{L̂ij=1,Lij=0} + λ max
1≤i≤N

N∑
j=1

I{L̂ij=0,Lij=1} ≤ 3 · ϱT c1 (N) .

From condition (b) in Assumption 3, we get

P
(∥∥RT

L̂
−RT

L

∥∥ > AϱT c1 (N)
)
= O (κ2 (N, T )) . (25)
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For the third part, with the property of function sλ and class U1, we have

∥∥RT
L −R

∥∥ ≤ max
1≤i≤N

N∑
j=1

(
|rij − rij| I{Lij=1} + |sλ (rij)− rij| I{Lij=0}

)
= max

1≤i≤N

N∑
j=1

|sλ (rij)− rij| I{Lij=0} ≤ 2 max
1≤i≤N

N∑
j=1

|rij| I{Lij=0}

= 2 max
1≤i≤N

N∑
j=1

|rij|1−q |rij|q · I{Lij=0} ≤ λ1−qc0 (N) .

(26)

Finally, collecting Equation 24, Equation 25 and Equation 26, we get

P

(∥∥∥R̂T
L̂
−R

∥∥∥ > A

(
c0 (N)λ1−q + c1 (N)

√
logN

T
+ c1 (N) ϱT

))
= O

(
1

N2
+ κ1 (N,T ) + κ2 (N,T )

)
,

which gives the consistency of R̂T
L̂

.

Now we return to Σ. For the operator norm,
∥∥∥D̂ −D

∥∥∥ = O

(
A
√

logN
T

)
holds under Ac

1,1.

Triangle inequality gives

∥∥∥Σ̂T
L̂
−Σ

∥∥∥ =
∥∥∥D̂R̂T

L̂
D̂ −DRD

∥∥∥ =
∥∥∥D̂ (R̂T

L̂
−R

)
D̂ + D̂RD̂ −DRD

∥∥∥
≤
∥∥∥D̂ (R̂T

L̂
−R

)
D̂
∥∥∥+ ∥∥∥D̂RD̂ −DRD

∥∥∥ .
The first term is bounded by O

(∥∥∥R̂T
L̂
−R

∥∥∥) provided σii < M in Equation 4 and the event

Ac
1,1. For the second part, under Ac

1,1, we have

∥∥∥D̂RD̂ −DRD
∥∥∥ ≤

∥∥∥D̂R(D̂ −D
)∥∥∥+ ∥∥∥(D̂ −D

)
RD

∥∥∥ ≤ O

(
A

√
logN

T

)
.

Hence, we obtain P

(∥∥∥Σ̂T
L̂
−Σ

∥∥∥ > A

(∥∥∥R̂T
L̂
−R

∥∥∥+√ logN
T

))
= O

(
1
N2 + κ1 (N, T )

)
. In con-

clusion, since c1 (N) → ∞, we get

P

(∥∥∥Σ̂T
L̂
−Σ

∥∥∥ > A

(
c0 (N)λ1−q + c1 (N)

√
logN

T
+ c1 (N) ϱT

))
= O

(
1

N2
+ κ1 (N,T ) + κ2 (N,T )

)
,

which ends the proof.
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A.2 Proof of Theorem 2

Proof . By triangle inequality, we have
∥∥∥R̂B

Ĉ
−R

∥∥∥ ≤
∥∥∥R̂B

Ĉ
−RB

Ĉ

∥∥∥ + ∥∥∥RB
Ĉ
−RB

C

∥∥∥ + ∥∥RB
C −R

∥∥.

For operator norm, the first part is

∥∥∥R̂B
Ĉ
−RB

Ĉ

∥∥∥ ≤ max
1≤i≤N

N∑
j=1

∣∣∣bĈ,k (r̂ij)− bĈ,k (rij)
∣∣∣

= max
1≤i≤N

N∑
j=1

|r̂ij − rij| I{
i∈S

ĉj
k ,j∈Sĉi

k

}

≤ k max
1≤i≤N

|r̂ij − rij| .

Thus under the event Ac
1,1, one has

∥∥∥R̂B
Ĉ
−RB

Ĉ

∥∥∥ ≤ O

(
k
√

logN
T

)
, which yields

P

(∥∥∥R̂B
Ĉ
−RB

Ĉ

∥∥∥ > A · k
√

logN

T

)
= O

(
1

N2
+ κ1 (N, T )

)
. (27)

For the second part, we have
∥∥∥RB

Ĉ
−RB

C

∥∥∥ ≤ max1≤i≤N

∑N
j=1

∣∣∣bĈ,k (rij)− bC,k (rij)
∣∣∣. Here,

note that
∣∣∣bĈ,k (rij)− bC,k (rij)

∣∣∣ can only be 0 or |rij|. Specifically, there are two cases where

the error is non-zero (and equals |rij|):

1. (i, j) ∈ S
cj
k × Sci

k , but (i, j) /∈ S
ĉj
k × S ĉi

k ;

2. (i, j) /∈ S
cj
k × Sci

k , but (i, j) ∈ S
ĉj
k × S ĉi

k .

Therefore, we have
N∑
j=1

∣∣∣bĈ,k (rij)− bC,k (rij)
∣∣∣ = N∑

j=1

|rij | I{
(i,j)∈S

cj
k ×S

ci
k ,(i,j)/∈S

ĉj
k ×S

ĉi
k

} +

N∑
j=1

|rij | I{
(i,j)/∈S

cj
k ×S

ci
k ,(i,j)∈S

ĉj
k ×S

ĉi
k

}

≤
N∑
j=1

|rij | I{
(i,j)∈S

cj
k ×S

ci
k ,(i,j)/∈S

ĉj
k ×S

ĉi
k

} +

N∑
j=1

|rij | I{(i,j)/∈S
cj
k ×S

ci
k }

≤
N∑
j=1

|rij |
(
I{

i∈S
cj
k ,i/∈S

ĉj
k

} + I{
j∈S

ci
k ,j /∈S

ĉi
k

})+ b1 (N) + b0 (N) k−α

≤ 2k

√
logN

T
+ b1 (N) + b0 (N) k−α
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under event Bc
2 where

B2 =

{
1

k

N∑
j=1

I{
j∈Sci

k ,j /∈Sĉi
k

} > A

√
logN

T

}
∪

{
1

k

N∑
j=1

I{
i∈S

cj
k ,i/∈S

ĉj
k

} > A

√
logN

T

}
.

Thus with condition (b) in Assumption 4 we get

P

(∥∥RB
Ĉ
−RB

C

∥∥ > A ·

(
k

√
logN

T
+ b1 (N) + b0k

−α

))
= O (κ3 (N, T )) . (28)

For the third part, we have

∥∥RB
C −R

∥∥ ≤ max
1≤i≤N

N∑
j=1

|bC,k (rij)− rij|

≤ max
1≤i≤N

N∑
j=1

|rij|
(
I{i/∈Scj

k } + I{j /∈Sci
k }
)

≤ max
1≤i≤N

N∑
j=1

|rij| I{i/∈Scj
k ,j∈Sci

k } + max
1≤i≤N

N∑
j=1

|rij| I{j /∈Sci
k }

≤ b1 (N) + b0 (N) k−α.

(29)

Combining Equation 27, Equation 28 and Equation 29 one may get

P

(∥∥∥R̂B
Ĉ
−R

∥∥∥ > A

(
k

√
logN

T
+ b0 (N) k−α + b1 (N)

))
= O

(
1

N2
+ κ1 (N, T ) + κ3 (N, T )

)
.

Then similar to the threshold estimator, the consistency of Σ̂B
Ĉ

can be derived under event Ac
1,1,

which is
∥∥∥Σ̂B

Ĉ
−Σ

∥∥∥ ≤ A

(∥∥∥R̂B
Ĉ
−R

∥∥∥+√ logN
T

)
. Finally, since k = kT → ∞, we obtain

P

(∥∥∥Σ̂B
Ĉ
−Σ

∥∥∥ > A

(
k

√
logN

T
+ b0 (N) k−α + b1 (N)

))
= O

(
1

N2
+ κ1 (N, T ) + κ3 (N, T )

)
,

which ends the proof.
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A.3 Proof of Corollary 1

Proof . Let DT = Σ̂f −Σf , CT = B̂ −B, we then have

∥∥∥Σ̂y −Σy

∥∥∥2
E
≤ A

(
∥BDTB

⊺∥2E +
∥∥∥BΣ̂fC

⊺
T

∥∥∥2
E
+ ∥CTΣfC

⊺
T∥

2
E +

∥∥∥Σ̂u −Σu

∥∥∥2
E

)
, (30)

for some constant A. Under our Assumptions 1 and 2, one can show

P

(
∥BDTB

⊺∥2E +
∥∥∥BΣ̂fC

⊺
T

∥∥∥2
E
> A ·

(
K logN

T
+
K2 log T

NT

))
= O

(
1

N2

)
,

P

(
∥CTΣfC

⊺
T∥

2
E > A · K

2N (logN)2

T 2

)
= O

(
1

N2

)
.

The proof can be found in Lemma B.3 of Fan et al. (2011). And for the part
∥∥∥Σ̂u −Σu

∥∥∥2
E

, we

have ∥∥∥Σ̂u −Σu

∥∥∥2
E
=

1

N

∥∥∥Σ− 1
2

u

(
Σ̂u −Σu

)
Σ

− 1
2

u

∥∥∥2
F
≤ ρmax (Σ

−1
u )

2

N

∥∥∥Σ̂u −Σu

∥∥∥2 ,
which is discussed before for both thresholding and banding estimators.

For the Network Guided Thresholding estimator, if Σ̂T
L̂

attains the best convergence

rate c0 (N)

(√
logN
T

+ ϱT

)
, then we have

P

(∥∥∥Σ̂y −Σy

∥∥∥
E
> A

(
K

√
N logN

T
+
√
K

√
logN

T
+

c0 (N)√
N

(√
logN

T
+ ϱT

)))
= O

(
1

N2
+ κ1,2

)
,

where κ1,2 := κ1 (N, T ) + κ2 (N, T ).

For the Network Guided Banding estimator, if Σ̂B
Ĉ

attains the best convergence rate

(1 + b0 (N))
(
logN
T

) α
2(α+1) + b1 (N), then we have

P

(∥∥∥Σ̂y −Σy

∥∥∥
E
> A

(
K

√
N logN

T
+
√
K

√
logN

T
+

(1 + b0 (N))√
N

(
logN

T

) α
2(α+1)

+
b1 (N)√

N

))
= O

(
1

N2
+ κ1,3

)
,

where κ1,3 := κ1 (N, T ) + κ3 (N, T ).
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